
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 22, NO. 4, APRIL 2012 567

Saving Energy in Video Servers by the
Use of Multispeed Disks

Manjong Kim, Student Member, IEEE, and Minseok Song, Member, IEEE

Abstract—Energy consumption is an important issue in data
centers, and disks use a significant proportion of the total energy.
A promising approach to reducing disk energy consumption
is to use multispeed disks with lower rotational speeds, and
allowing disks to run slowly when workloads are light can
reduce their large contribution to the power used by video
servers. We formulate the prerequisites for speed reductions, and
derive an energy model constrained by retrieval period. We then
analyze the relationship between retrieval period, buffer size,
and disk speed, and examine the effect of buffer allocation on
energy consumption. We then propose a new video data retrieval
scheme in which the retrieval period and the speed of each disk
is dynamically changed to adjust disk bandwidth utilization,
with the aim of allowing disks to run at lower speeds while
guaranteeing jitter-free speed transitions. Experimental results
show that our scheme achieves appreciable energy savings under
all workloads. They also reveal that increasing the number of
available speeds reduces energy consumption but the benefits
gradually tail off.

Index Terms—Low-power systems, video-on-demand (VoD)
systems, video storage servers.

I. Introduction

THE INCREASING number of Internet-based services
which involve web hosting and e-commerce has lead to

a proliferation of data centers that house the growing server
infrastructure of the Internet. The provision of storage is a
major function of data centers and demand for storage is
increasing by 60% annually [1], [2]. In particular, the recent
growth of video services such as digital libraries, education-
on-demand, distance learning, user-created content, and video-
on-demand (VoD) has greatly increased the amount of storage
provided by data centers greatly [3]. For example, it has been
estimated that YouTube serves 40 million videos every day,
which amounts to 200TB of data [4].

The energy consumption of servers is a significant problem.
Energy User News [5] recently suggested that the power

Manuscript received December 2, 2010; revised May 30, 2011; accepted
August 13, 2011. Date of publication October 3, 2011; date of current version
April 2, 2012. This work was supported in part by the Basic Science Research
Program through the National Research Foundation of Korea funded by the
Ministry of Education, Science, and Technology, under Grant 2009-0065248,
in part by the IT Research and Development Program of MKE/KEIT, under
Grant 10035243 (Component Based Design Theory and Control Kernel for
CPS), and in part by the Inha University Research Grant. This paper was
recommended by Associate Editor G. G. (Chris) Lee.

The authors are with the School of Computer and Information Engineering,
Inha University, Incheon 402-751, Korea (e-mail: kmjlove130@hotmail.com;
mssong@inha.ac.kr).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSVT.2011.2170112

requirements of a typical data center is now 150–200 W/ft2 and
will soon be 200–300 W/ft2. This represents a significant cost
to service providers. For instance, a medium-sized 30 000 ft2

data center typically requires 15 MW, which corresponds to an
annual bill of $13 million [2], [6]. Overall power requirements
account for about 19% of a data center’s total cost of owner-
ship [7]. The environmental cost is also high [1], [2], and this
can also impact the public perception of organizations running
and using data centers.

The power consumed in a server naturally ends up as heat,
and it has been shown that running at 15 °C above ambient
can double the failure rate of a disk drive [2], [6]. But cooling
systems designed for high heat densities are expensive and the
cooling system itself adds significantly to the power cost of a
data center. Thermal constraints also make it difficult to uprate
servers.

Due to the combination of high capacity and bandwidth
requirements, video servers are typically built as a redundant
array of independent disks (RAIDs), which may consist of
hundreds of disks. Storage devices are among the components
in a server, and a recent report has indicated that they take
27% of the total power [2], [6], [8]. A large disk array may
actually use more energy than the rest of a system, depending
on the array size [6]. For instance, it has been reported that
disk drives use 86% of the energy required by a typical EMC
Symmetrix 3000 storage system [9]. This problem is being
exacerbated by the arrival of faster disks which need more
power.

Disks of modern design make some attempt to save energy
by the use of multiple power modes [2], [6], [8]: in active
mode the head is reading or writing data, in seek mode the
head is seeking, in idle mode the disk spins at full speed
but is processing no requests for data, and in standby, a disk
stops spinning completely but consumes much less energy than
in any other mode. Returning from standby to active mode
naturally involves spinning up the disk, and so the energy
saved while the disk is in standby mode should be greater than
the energy needed to spin it up again; we call the shortest idle
period which justifies the energy cost of spinning up again the
break-even time.

A commonly used method of energy saving is to transition a
disk into standby mode after it has been idle for a while [10]–
[12]. If a request arrives while a disk in standby mode, then it
immediately transitions to active mode to service the request.
But this method of power saving is inapplicable to most servers
because the time between consecutive disk requests generated

1051-8215/$26.00 c© 2011 IEEE

568 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 22, NO. 4, APRIL 2012

by a typical server workload is too short [13]. It is particularly
unsuitable for VoD systems; video data needs to be read
continuously while a movie is playing. Allowing disk to enter
standby mode causes playback to be distorted or paused due
to violation of the timing constraints of the video data [14].
We refer to this phenomenon as jitter.

Reducing the speed at which a disk spins reduces its power
consumption. Gurumurthi et al. [8], [15] have suggested that
multispeed disks could save a lot of power consumption in
servers. A disk running slowly would be able to support a
small number of video requests, whereas a single-speed disk
servicing the same workload needs to spin at full speed. In
addition, disks able to change speed while spinning would
require less energy and shorter time to shift between different
speeds than a single-speed disk requires to shift from standby
to active mode [8], [15]. Multispeed disks are now on the
market (e.g., from Hitachi [16] and Sony [17]) and are being
used to build energy-efficient storage systems (e.g., Nexsan
storage servers [18]). This makes it essential to develop
effective power-saving techniques for multispeed disks.

We propose a new energy-aware data retrieval and buffer
management scheme for video servers which use multispeed
disks. We review work on this topic in Section II, and in
Section III, we present our system model. In Section IV, we
introduce a resource utilization model which will allow us
to examine how the retrieval period and the rotational speed
affect disk and buffer utilizations. We analyze the relationship
between retrieval period, buffer size, and speed, and then
examine how the retrieval period affects energy consumption
in Section V. We go on to propose a new data retrieval and
buffer management scheme in which the retrieval period and
the speed of each disk can be dynamically changed to match
disk utilization, with the aim of minimizing overall energy
consumption while providing jitter-free speed transitions in
Section VI. We assess the proposed scheme through simula-
tions in Section VII. We suggest extensions of our scheme in
Section VIII and conclude this paper in Section IX.

II. Related Work

A. Disk Power Management for Data Centers

Several techniques have been proposed to reduce the energy
consumption of storage devices in servers, most of which
involve extending the periods during which disk can be put
into standby mode. Pinheiro et al. [19] used load concentration
techniques to do this, while Zhu et al. [2] introduced a caching
scheme that selectively retains data in memory so that some
of the disks in an array can stay in standby mode for longer
periods.

Redundancy is necessary in all practical storage systems,
and this is exploited by several energy conservation schemes.
Pinheiro et al. [20] redirected data requests to active disks to
save energy on standby disks, and Yao et al. [21] proposed
a redundancy-based hierarchical I/O cache architecture called
RIMAC to reduce the energy consumption of disks.

To reduce energy usage when server workloads are intense,
Gurumurthi et al. [8], [15] have proposed a speed-changing
scheme called dynamic rotations per minute (DRPM). There

have been other schemes, which involve monitoring the length
of the queue of disk requests and then changing disk speeds to
keep response times within a predefined range. For example,
Zhu et al. [6] proposed a flexible disk placement architecture
called Hibernator which is designed to reduce disk speeds as
often as possible. Son et al. [22] proposed a compiler-directed
prefetching scheme which allows the disks more opportunity
to stay in low-speed mode, and Xie [13] have put forward
a data placement technique in which loads are distributed in
such a way that some disks can run at low speeds.

All of these techniques try to resolve disk power issues in
various ways, but they cannot provide the real-time guarantees
essential for video workloads making them unsuitable for
video servers. Song [14] has presented a scheme to permit
disks to enter standby mode in video servers, but it requires
data to be replicated between disks. Its main aim is to
extend the length of time for which a proportion of the disks
storing this replicated data can stay in standby mode, and
the possibility of multispeed disks is not considered. In fact,
we are not aware of any previous systematic approach to the
design of video servers with multispeed disks.

B. Disk Power Management for Mobile Devices

Disk energy saving techniques for multimedia workloads on
mobile devices have received more attention. Cai et al. [25]
used data buffers to create long idle periods during the play-
back of MPEG videos. Pettis et al. [26] constructed analytical
models of disk energy consumption during streaming. Won
et al. [12] used prefetching schemes to extend the length of
time that a disk stays in standby mode. Go et al. [43] presented
a data prefetching scheme that reads frames into buffer on a
just-in-time basis to provide real-time video playback. Kim et
al. [44] presented a data prefetching scheme to make effective
use of a combination of dynamic random access memory
(RAM) and Flash memory to store prefetched data. Rao
et al. [23] investigated the problem of choosing disk speeds,
and Liu et al. [24] investigated I/O speed setting strategies for
multimedia workloads.

To allow a disk to enter standby mode, all of these schemes
prefetch data into a buffer so that further requests can be
handled from memory without accessing the disk. They were
developed for portable media players that use a single disk,
whereas our paper focuses on multiple disks with video server
workloads. In addition, our scheme uses multispeed disks
which have not been seriously considered for mobile devices.

III. Background

A. Retrieval Scheduling

To support the periodic retrieval of video streams efficiently,
video servers usually use round-based scheduling: time is
divided into equal-sized periods, called rounds, and each client
is served once in each round [27]. For example, to serve a
stream at 1.5 Mb/s with a round length of 2 s, the server needs
to read 3 Mb of data during every round. Since the data transfer
rate of a single disk is significantly higher than the playback
rate of a single video stream, each disk in a video server is

KIM AND SONG: SAVING ENERGY IN VIDEO SERVERS 569

TABLE I

Performance and Power Consumption at Each RPM Level

RPM 2880 3960 5040 6120 7200
Transfer rate (MB/s) 24.56 33.77 42.98 52.19 61.4
Rotational delay (ms) 5 3.6 2.86 2.35 2
Idle power (W) 4.08 5.11 6.48 8.17 10.2
Active/seek power (W) 7.38 8.41 9.78 11.47 13.5

able to provide the data for multiple streams. Disk bandwidth
utilization can then be defined as the ratio of the total service
time spent retrieving all the streams during a round to the
round length, and this utilization must be less than or equal
to 1 [27].

Disk scheduling determines the order in which blocks
belonging to different video streams are retrieved from a
disk during a round. There are three categories of scheduling
algorithms: round-robin scheduling, scan scheduling, and the
grouped sweeping scheme (GSS) [28], [29]. In round-robin
scheduling, the order in which clients are served does not vary
from one round to another; this results in excessive seek time
and poor disk utilization. In scan scheduling, the disk heads
scan steadily back and forth across the platters and retrieve
a required blocks as they pass over them; this minimizes the
total seek time. GSS partitions a round into groups and scan
scheduling is then used in each group. We use scan scheduling
because it has the best performance in terms of disk throughput
and widely used [28], [29].

B. System Model

The disk blocks belonging to a file may be scattered across a
disk or stored contiguously. Reading scattered blocks requires
a lot of seeks, so files for video applications are usually
stored contiguously [27], [28]. However, a video file may be
partitioned into chunks and striped over multiple disks for load
balancing [30]. But striping reduces scalability, throughput,
and reliability, and introduces delays [31], [32], and we will
only consider striping as a possible extension of our scheme
in Section VIII.

Several components of a disk use power. These include
the spindle motor which spins the platters, the actuator that
makes the head move, the electrical components involved
in data transfer, as well as other circuitry [15], [23]. The
power required by the spindle motor typically has a linear
or quadratic relationship with speed [6], [15], [23]. Even in
idle mode, this motor typically consumes about 80% of the
total power used by the disk.

The DRPM scheme requires a disk capable of running at
an essentially arbitrary speed [15], [23]. But we will consider
disks that can run at a discrete set of speeds, because this is
what is presently offered by commercial multispeed disks [6].
However, whereas current commercial multispeed disks have
only two speeds [16], [17], we are going to consider disks
with a larger number of speeds, because it appears likely that
such disks will soon be available [2], [6]. Our power model is
based on the Hitachi 7K400 disk [16] and we use a quadratic
curve to model the power required by the spindle motor [15],
as shown in Table I.

C. Facilitating Reduced Disk Speeds

We have already described how a single-speed disk supply-
ing video data that is not replicated has no opportunity to enter
standby mode. But a multispeed disk can service some level of
requests at reduced speeds without transitioning to full speed,
thus saving energy. To reduce disk power consumption, it is
desirable to reduce disk speeds as far as possible, but disk
bandwidth utilization cannot exceed 1. To satisfy these two
constraints simultaneously, we first calculate disk bandwidth
utilization at each speed and then determine the lowest speed
that keeps the disk bandwidth utilization below 1; finally, we
determine the power consumption at this lowest speed.

It may take a significant amount of time to transition from
one speed to another (e.g., 7 s for the Hitachi drive [16]).
During the transition period requests for data cannot be
handled, leading to violation of the timing constraints of the
video data termed jitter, and it is therefore essential to ensure
that speed transitions in video server disks do not cause jitter.

IV. Basic Concept and Resource

Utilization Model

A. Basic Concept

On receiving a playback request from a client, a video server
reads the required data from a disk, and then temporarily
stores that data in a buffer until it is served. In round-based
scheduling, the round length plays an important role in deter-
mining what disk bandwidth and buffer size are required [28],
[29]. Increasing the round length reduces the disk bandwidth
utilization because the seek time is amortized over more data,
but this increases buffer requirements because a lot of buffer
space is needed to store the data retrieved during a round [29].

Because the bandwidth utilization of a disk effectively
determines its speed level, our scheme adjusts the round
length dynamically with the aim of minimizing the overall
energy consumption. Extending the round length reduces disk
bandwidth utilization, leading to a reduction in disk speeds.
However, a longer round means that a larger buffer is needed
to store the data retrieved during each round. So judicious
buffer allocation methods are needed because buffer space
is limited and must be shared between disks. We will now
describe how round length and speed affect disk bandwidth
and buffer utilization.

B. Disk Bandwidth and Buffer Utilization

We will consider a disk array with Nd disks. (Table II
summarizes the important symbols used in this paper.) Sup-
pose that client i requests a video stream that has a playback
rate of bi bits/s. We can partition the clients into Nd groups:
G1, . . . , GNd

, where the clients in group Gk receive video
streams from disk k. We define a list of Nr round lengths,
S = {Rj |Rj = sr + u(j − 1), (j = 1, . . . ,Nr)}, where sr is
the length of the shortest round, u is the increment of round
length, j is the round length index, and lr is length of the
longest round length, so lr = sr +u(Nr −1). This list is sorted
into ascending order.

570 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 22, NO. 4, APRIL 2012

We use a typical seek time model in which a constant seek
time Ts is required for one read of contiguous data [27]–
[29]. Although the disk speed does not affect the seek time, it
does change the rotational delay and the data transfer rate [6],
[15]. If a disk is running at speed level m, (m = 1, . . . ,Ns),
where Ns is the number of levels available, we will write the
rotational delay as Td(m) and the data transfer rate as r (m).
Obviously, increasing the speed level m decreases Td(m) but
increases r (m).

Let us now see how buffer and disk bandwidth requirements
depend on the speed level m and the round length index j. To
provide real-time video playback, the total time spent reading
all video streams during a round must not exceed the round
duration [27]–[29], and the amount of data that must be read
during a round Rj for client i is Rjbi in order to keep up
with the playback rate. Reading the data needed for client i

during this round incurs a seek and rotational delay overhead
of Ts + Td(m) and a reading time of Rjbi

r (m) : thus the total time

taken to serve client i is Ts + Td(m) + Rj bi

r(m) seconds.
Recall that the disk bandwidth is the ratio of total service

time to round length; thus we can express the disk bandwidth
utilization U d

k (j ,m) of disk k running at speed level m, when
the round length index is j, as follows:

U d
k (j ,m) =

∑
i∈Gk

Ts + Td(m) + Rj bi

r (m)

Rj
. (1)

Let B be the total buffer size. To achieve synchronization,
double-buffering is used for scan scheduling [27], [33], and
buffer utilization is not dependent on disk speed. Therefore,
serving client i increases the buffer utilization by 2Rj bi

B
, where

B is the size of the buffer, and we can go on to obtain the
buffer utilization U b

k (j) for disk k when the round length index
is j, as follows:

U b
k (j) = 2

∑
i∈Gk

Rjbi

B
. (2)

C. Resource Requirements for Jitter-Free Speed Transitions

To achieve a jitter-free speed transition, we must prefetch
the data that will be consumed during the speed transition
period, which requires contingent disk bandwidth and buffer
space [34]. Let Tt be the transition time between two different
speed levels, and let crk be the current round length of disk
k. The server not only needs to prefetch enough data for
the transition but the data that will be consumed during the
round immediately after the transition period also needs to be
prefetched, if jitter is to be avoided. Since it is impossible
to know the new round length after a speed change, we
reserve enough disk bandwidth for the shortest round length
sr , because this requires the highest bandwidth as we can see
from (1). We assume that prefetching starts Np rounds before
the beginning of the actual transition as shown in Fig. 1.

A speed change may require a total of Tt +sr seconds worth
of data to be prefetched for each client. Prefetching starts
Np rounds before the speed transition, so the amount of data
needed for client i, which is (Tt + sr)bi, can be prefetched
across Np rounds, as shown in Fig. 1. We, therefore, reserve

Fig. 1. Example of prefetching operation.

the contingent disk bandwidth for disk k, C d
k , which can be

expressed as follows:

C d
k =

∑
i∈Gk

Ts + Td(m) + (Tt+sr)bi

r (m)

Npcrk
. (3)

Buffer space must be available to store the prefetched data.
Because we cannot predict the round length after a speed
change as we have already noted, we reserve enough buffer
space for the longest round length. This means that buffer
space of (Tt+lr)bi is needed for client i, so the additional buffer
space, C b

k that must be reserved for disk k can be expressed
as follows:

C b
k =

∑
i∈Gk

(Tt + lr)bi. (4)

To allow for all possible patterns of speed changes across
a disk array, we need to reserve the full contingent disk
bandwidth for every disk, but this bandwidth is only needed
for a speed transition. It is, however, wasteful to reserve
the full amount of contingent buffer space for every disk,
because all the disks are very unlikely to change their speeds
simultaneously. We thus limit the number of simultaneous
speed changes.

V. Pattern of Energy Consumption

We will now examine how energy consumption depends
on the round length index j and the speed level m. We
have already noted that the contingent disk bandwidth C d

k

is only needed to prefetch data when speed change occurs.
Prefetching data increases the energy consumption before the
speed change, but these are the data that would otherwise have
been read during the speed transition, so prefetching has no
overall impact on the total energy consumption. If a disk is
rotating at speed level m, then Ps(m) is the power required
during the seek phase, Pa(m) is the power required while the
disk is reading or writing, and Pi(m) is the power consumed
when the disk is rotating. We can now formulate some energy
properties for a disk k.

1) The total seek time during Rj is
∑

n∈Gk
Ts. When the

speed level is m, the energy required to perform seeks
during Rj , denoted by Es

k(j, m), is
∑

i∈Gk
TsPs(m).

2) The total data transfer time during Rj is
∑

i∈Gk

Rj bi

r (m) , so
the energy required for reading data during Rj , denoted
by Ea

k(j, m), is
∑

i∈Gk

Rj bi

r (m)Pa(m).
3) If no disk activity is taking place, the disk is rotating,

and if the disk is waiting for data to arrive underneath
the head to start reading operation, it is rotating without
reading or seeking. In both cases, the disk requires a

KIM AND SONG: SAVING ENERGY IN VIDEO SERVERS 571

TABLE II

Important Symbols Used in This Paper

Symbols Meaning
Nd Number of disks in a disk array.
Ns Number of speed levels.
Nr Number of round lengths.
Nl Maximum number of simultaneous speed changes allowed.
Np Number of rounds during which prefetching is allowed.
sr Shortest round length.
lr Longest round length.
bi Bit-rate of video that client i requests.
B Total buffer size.
Ts Typical seek time.
Tt Speed transition time.
Td (m), r (m) Rotational delay and transfer rate when speed level m is selected, respectively.
Ps(m), Pa(m), Pi(m) Seek, active, and idle power for speed level m, respectively.
Es

k
(j, m), Ea

k
(j, m), Ei

k
(j, m) Seek, active, and idle energy of disk k during Rj when the round length index is j and the speed level is m, respectively.

S Set of round lengths Rj s; S = {Rj |Rj = sr + u(j − 1), (j = 1, . . . ,Nr)}, where j represents the round length index.
U d

k (j, m) Disk bandwidth utilization for disk k when j is selected as the round length index, and m as the speed level.
U b

k (j) Buffer utilization for disk k when j is selected as the round length index.
Pk(j, m) Power requirement for round length index j and speed level m.
C d

k , C b
k Contingent disk bandwidth and buffer utilizations imposed on disk k for jitter-free speed transition, respectively.

crk Current round length for disk k.
Fk A list of feasible round length index and the speed level pairs for disk k.
Zk Zk = {(j, m)| Rj ∈ S and U d

k (j, m)) ≤ 1 − C d
k , and m is the current speed level}.

Ok Ok = {(j, m)| Rj ∈ S and U d
k (j, m) ≤ 1 − C d

k , and m is not the current speed level}.
Lk Zk

⋃
Ok .

Hk A subset of Lk , where elements requiring more buffer space and power than any other elements in Lk are excluded.
Ik Parameter indicating whether the mth element in Lk is in Hk or not.
N e

k Number of elements in the list Lk .
pf The amount of prefetching buffer space for Nl most heavily loaded disks.
Ps

k ,m The saving in power when the mth element in Lk is selected.

Br
k ,m The buffer requirement when the mth element in Lk is selected.

Yk ,m If the speed level of the mth element in Lk is the same as the current speed level, then Yk,m = 0; otherwise, Yk,m = 1.
Xk ,m Parameter indicating whether the mth element in Lk is selected or not.

Fig. 2. Disk bandwidth utilization, selected speed level, and power consumption against round length when 50 clients request 3 Mb/s video streams. (a) Disk
bandwidth utilization U d

k (j , 1). (b) Selected speed level. (c) Power consumption.

power of Pi(m). We calculate the total idle time during
a round of length Rj by subtracting the seeking and
reading times from Rj . We denote the energy consumed
during Rj in this idle mode, Ei

k(j, m), which can be
expressed as follows:

Ei
k(j, m) = (

total idle time︷ ︸︸ ︷
(Rj︸︷︷︸

round length

−
∑
i∈Gk

(Ts +
Rjbi

r (m)
))

︸ ︷︷ ︸
total read and seek time

Pi(m).

We can then express the total power requirement, Pk (j ,m),
in terms of the round length index j and the speed level m as

follows:

Pk (j ,m) =
Es

k(j, m) + Ea
k(j, m) + Ei

k(j, m)

Rj
. (5)

From (1), we observe that increasing the round length
reduces the disk bandwidth utilization at every speed. This
reduction may be sufficient to allow the disk to operate at
a lower speed, saving energy. To illustrate this possibility, we
examine how the disk bandwidth utilization at the lowest speed
level, the selected speed level, and energy consumption depend
on the round length when 50 clients request a video stream
of 3 Mb/s using the disks in Table I. The results, shown in
Fig. 2, demonstrate that increasing round length reduces the
disk bandwidth utilization, which allows the speed level to be
reduced, saving power.

572 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 22, NO. 4, APRIL 2012

VI. Adaptive Adjustment of Round

Length and Speed

A. Problem Formulation

We have just seen that a longer round allows a power
reduction. But (2) tells us that the buffer space requirement
increases in proportion to the round length. This means that
judicious round length selection is important to balance power
consumption and buffer space. To meet this end, we now
propose an adaptive round length adjustment scheme in which
the round length and the disk speed are chosen with the aim
of minimizing the total power consumption.

We have seen that a change of speed requires data prefetch-
ing, which involves a lot of buffer space. But, because the
buffer is shared between disks, we can reduce the need for
buffer space by limiting the number of simultaneous speed
changes. Let Nl be the maximum number of disks which
can change speed simultaneously. Because it is hard to know
which disks will change their speeds, we reserve an amount
of prefetching buffer, pf , which is enough for the Nl most
heavily loaded disks to change speed. To determine pf , we
sort all k disks into nonincreasing order on the values of C b

k ,
where dm is the index of the disk with the mth highest value
of C b

k . Thus

pf =
Nl∑

m=1

C b
dm

.

Our goal is to find one pair of round and speed levels for
each disk that minimizes the total disk power consumption.
Recall that a disk’s bandwidth utilization cannot exceed 1,
and that a speed change requires a contingent disk bandwidth
C d

k to be reserved for each disk k. Thus, we can define a list
Fk of feasible round length index and the speed level pairs for
disk k as follows:

Fk = {(j, m)| Rj ∈ S and U d
k (j, m) ≤ 1 − C d

k }.
To reduce the time needed to select one element in each

list, we can eliminate some pairs that will be never selected.
Any pair that corresponds to both a larger buffer requirement
and a greater power consumption than any other pair in
Fk can be removed, if selecting this pair changes the disk
speed. For example, consider a list of round length index
and the speed level pairs, Fk = {(3, 2), (4, 3), (5, 4)}, where
the current speed level is 4. Here, (4, 3) can be removed
because it requires a larger buffer requirement and more
power than (3, 2). But (5, 4) remains even though it has
the largest buffer and power requirement, because select-
ing this pair does not change the disk speed. We achieve
this removal of hopeless pairs by dividing Fk into two
lists Zk and Ok , defined as follows: Zk = {(j, m)| Rj ∈
S and U d

k (j, m) ≤ 1−C d
k , and m is the current speed level};

and Ok = {(j, m)| Rj ∈ S and U d
k (j, m) ≤ 1 −

C d
k , and m is not the current speed level}. Using these lists,

we can prune the list of the candidate pairs in the following
steps.

1) Remove pairs from list Ok that correspond to larger
buffer and power requirements than any other pairs in
Ok .

2) Remove pairs from list Zk that correspond to larger
buffer and power requirements than any other pairs in
Zk .

3) Establish a new list Lk for disk k, defined as follows:
Lk = Zk

⋃
Ok , containing N e

k pairs. Lk is sorted in
nondecreasing order of power requirement.

We must select one pair consisting of a round length index
and a speed level from Lk . To represent this selection, we
define the binary variables Xk,m, (k = 1, . . . ,Nd and m =
1, . . . ,N e

k) as follows: if the mth element in Lk is selected,
then Xk,m = 1, otherwise, Xk,m = 0. To reduce the buffer space
needed for prefetching, we limit the number of disks that can
change speed to Nl. To express this limitation, we introduce
the binary variables Yk,m, (k = 1, . . . ,Nd and m = 1, . . . ,N e

k)
as follows: if the speed level of mth element in Lk is the same
as the current speed level, then Yk,m = 0, otherwise, Yk,m = 1.
Let Br

k ,m be the buffer requirement when the mth element in
Lk is selected. Then we have the following constraints.

1)
∑Ne

k

m=1 Xk,m = 1 and Xk,m ∈ 0, 1, (k = 1, . . . ,Nd and m =
1, . . . ,N e

k): For each disk, only one pair consisting of
a round length index and a speed level, can be selected.

2)
∑Nd

k=1

∑Ne
k

m=1 Xk,mYk,m ≤ Nl: This ensures there are no
more than Nl simultaneous speed changes.

3)
∑Nd

k=1

∑Ne
k

m=1 Xk,mBr
k ,m ≤ 1− pf

B
: The total space, includ-

ing the space needed for prefetching, must not exceed
the total buffer size B.

Let P s
k ,m be the energy saved by selecting the mth element

in Lk instead of the element in L1

⊔
...

⊔
LNd

that consumes
the most energy. Our goal is now to find the element in Lk ,
(k = 1, . . . ,Nd) that saves the most energy without causing
the buffer to overflow, while limiting the number of disks that
change speeds to Nl. We can formally describe this round
length and speed selection problem (RSSP) as follows:

maximize
∑Nd

k=1

∑Ne
k

m=1 Xk,mP s
k ,m

subject to
∑Nd

k=1

∑Ne
k

m=1 Xk,mYk,m ≤ Nl∑Nd

k=1

∑Ne
k

m=1 Xk,mBr
k,m ≤ 1 − pf

B∑Ne
k

m=1 Xk,m = 1, (k = 1, . . . ,Nd)
Xk,m ∈ 0, 1, (k = 1, . . . ,Nd and m = 1, . . . ,N e

k).

RSSP is a variant of the multidimensional multiple-choice
knapsack problem (MMKP) in which there is a set of objects
and a knapsack with a capacity vector. Each object consists
of a set of items, each of which has a weight vector and a
profit. The problem is to select exactly one item from each
object so as to maximize the total profit while satisfying the
capacity constraints [35]. We can relate the RSSP to MMKP
by considering each disk in an array as an object, and regarding
each pair of a round length and a speed as items in that object.
This is a variant of the multiple-choice knapsack problem
(MCKP) which has only one constraint.

Since MMKP is NP-hard, RSSP is also an NP-hard
problem. We have effectively formulated RSSP as an integer
linear programming (ILP), so we can obtain the optimal solu-
tion using an ILP solver such as the lp−solve program [36].
But this may require a lot of computation, which may not be
acceptable in our case. For this reason, we have developed

KIM AND SONG: SAVING ENERGY IN VIDEO SERVERS 573

a heuristic algorithm for RSSP , which runs in polynomial
time.

B. Heuristic Algorithm

Our heuristic algorithm is divided into two phases. In the
first phase, it tries to find the best configuration that satisfies
the buffer requirement alone. If the number of speed changes
exceeds Nl, then it enters the second phase to reduce the
number of speed changes. We will outline each phase as
follows.

1) By considering the buffer constraint alone, the problem
is reduced to be a variant of the MCKP. This is NP-
hard [35], but greedy algorithms generally show good
performance on MCKP [35], [46], so we use a greedy
approach. We maintain parameters representing the ratio
of power saving to buffer space and choose pairs with
the best ratios.

2) To reduce the number of speed changes, we favor the
selection of pairs for which Yk,m = 0, meaning that
no speed changes are required. We also use a greedy
method to find the pair in Zk with the lowest power
consumption, which also meets the buffer constraint.

We will look at our algorithm in more detail. We first define
the variables Qk , (k = 1, . . . ,Nd) which signify that the Qk th
pair in the list of Lk is selected for disk k. Qk is initialized to
Ne

k , which corresponds to the lowest power consumption but
the largest buffer requirement. The value of Qk may then be
reduced to meet the buffer constraint

Nd∑
k=1

Ne
k∑

m=1

Xk,mBr
k,m ≤ 1 − pf

B
.

In the first phase, we try to find the configuration that
leads to the lowest power consumption, subject to the buffer
constraint but irrespective of the number of speed changes.
Note that several pairs with the current speed level may be
included in Lk , even though they require more buffer space
and more power than other pairs in Lk . These pairs cannot be
selected during the first phase [35], so we exclude them from
Lk to create a new set Hk for disk k. We then introduce a new
indicator variable Ik,m as follows: if the mth element in Lk is
in Hk , then Ik,m = 1, otherwise Ik,m = 0.

We apply a well-known greedy method [46] to the first
phase, and define the parameters Wk ,n for disk k, as follows:

Wk ,n =
P s

k,Ne
k

− P s
k,n

Br
k ,Ne

k
− Br

k ,n

where Ik ,n = 1 and n �= N e
k . The numerator in the expression

is the increment in power requirement, while the denominator
is the decrease in buffer requirement. A greedy algorithm
will choose the most profitable change first. It selects the
lowest value of Wv ,l and reduces Qv to l to keep the buffer
requirement as low as possible while minimizing the power
requirement. These operations are repeated until the buffer
requirement can be satisfied.

If the number of speed changes produced by the first phase
exceeds Nl after the first phase, then the algorithm enters
its second phase to reduce the number of speed changes.

Algorithm 1 Two-Phase Heuristic Algorithm
1: Set of all values of Wk ,n , where Ik ,n = 1: Af ;
2: Temporary variables: U, C and Qk , (k = 1, . . . ,Nd);
3: Boolean variables: flag1 and flag2;
4: Xk,m initialized to 0 (k = 1, . . . ,Nd and m = 1, . . . ,Ne

k);
5: Qk initialized to Ne

k , (k = 1, . . . ,Nd);

6: U ←
∑Nd

k=1
Br

k ,Ne
k

;

7: flag1 ← TRUE;
8: flag2 ← TRUE; // Initialization
9: while U > 1 − pf

B
and flag1 = TRUE do

10: Find the lowest value of Wv ,l ∈ Af and remove that Wv ,l from Af ;
11: if l < Qv then
12: Qv ← l;
13: U ← U − Br

v ,Qv
+ Br

v ,l ;
14: if Af = φ then
15: flag1 ← FALSE; // Buffer requirement cannot be met
16: end if
17: end if
18: end while // First phase ends.
19: C ←

∑Nd

k=1
Yk,Qk

;
20: while flag1 = TRUE and C > Nl do
21: As = {Ps

k ,n | Yk,n = 0 and n �= Qk};
22: while flag2 = TRUE and C > Nl do
23: Find the highest value of Ps

v ,h ∈ As and remove that Ps
v ,h from As ;

24: if U − Br
v ,Qv

+ Br
v ,h ≤ 1 − pf

B
then

25: Qv ← h;
26: U ← U − Br

v ,Qv
+ Br

v ,h ;

27: C ←
∑Nd

k=1
Yk,Qk

;
28: end if
29: if As = φ then
30: flag2 = FALSE;
31: end if
32: end while
33: if C > Nl then
34: if Af = φ then
35: flag1 = FALSE;
36: else
37: Repeat finding the lowest value of Wv ,l ∈ Af and removing that Wv ,l from

Af until an l less than Qv can be found;
38: if Such an element l can be found then
39: Qv ← l;
40: U ← U − Br

v ,Qv
+ Br

v ,l ;
41: else
42: flag1 = FALSE;
43: end if
44: end if
45: end if
46: end while // Second phase ends.
47: if flag1 = TRUE then
48: for k = 1 to Nd do
49: Xk,Qk

← 1;
50: end for
51: end if // If flag1 = FALSE, then there exists no feasible solution.

Now we are trying to select pairs which require no speed
change, and we maintain an array As of P s

k ,n values, where
As = {P s

k ,n | Yk,n = 0 and n �= Qk}. It is clearly profitable in
terms of energy to choose the pair with the highest value of
P s

k ,n in As. We select this element, written P s
v ,h , and change

Qk to h if this can be done without a buffer overflow; this
saves the most power without changing the disk speed. These
operations are repeated until the number of speed changes is
less than or equal to Nl, and the buffer requirement is met.
Pseudocode for this two-phase heuristic algorithm (TPHA) is
given as Algorithm 1.

C. Algorithm Execution

If changing speed requires the spindle to stop, then frequent
changes of speed must be avoided. Basically our scheme limits
the number of simultaneous speed changes to Nl. In addition,
now describe another way to reduce the number of spindle
stops. User access to videos follows a daily pattern and does

574 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 22, NO. 4, APRIL 2012

TABLE III

Comparison Between TPHA and Optimal Results

(10, 1 GB) (15, 1.5 GB) (20, 2 GB) (25, 2.5 GB) (30, 3 GB) (35, 3.5 GB), (40, 4 GB) (45, 4.5 GB)
0.03% 0.08% 0.04% 0.03% 0.06% 0.01% 0.05% 0.04%

TABLE IV

Average Times Taken to Solve RSSP
(10, 1 GB) (15, 1.5 GB) (20, 2 GB) (25, 2.5 GB)

TPHA lp−solve TPHA lp−solve TPHA lp−solve TPHA lp−solve
2 ms 37 ms 1 ms 71 ms 1 ms 273 ms 1 ms 1049 ms

(30, 3 GB) (35, 3.5 GB) (40, 4 GB) (45, 4.5 GB)

TPHA lp−solve TPHA lp−solve TPHA lp−solve TPHA lp−solve
1 ms 1127 ms 1 ms 2450 ms 2 ms 6324 ms 1 ms 26.465 ms

not change abruptly [39], [40]. For example, most accesses
occur during working hours and very few during the night;
most accesses last for quite a long time [39], [40]. Therefore,
the speed of a disk can be kept constant over quite a long
period. Thus we can select a set of speeds for the disks in
a server, which we expect to last for a certain period, based
on historic data. Each disk then stays as the assigned speed
throughout the entire period if the bandwidth that it provides
is sufficient. However, if the workload exceeds the bandwidth
available from that configuration, then a new set of speeds
needs to be chosen even though the period has not expired.

VII. Experimental Results

A. Simulation Environment

We evaluated the effectiveness of our scheme through
simulations of an array of Hitachi 7K400 disks. These have a
maximum data transfer rate of 61.4 MB/s and a typical seek
time of 8.5 ms [16]. We considered a range of up to five speeds
between 2880 and 7200 RPM, so as to be able to see the effects
of various speed configurations. The characteristics of each
speed level are shown in Table I. When a disk stops spinning
completely, it enters standby mode, which only consumes
2.5 W. The energy required to change speed or to stop spinning
is 152 J [6]. The transition time Tt between two speeds is
assumed to be 7 s [16].

The arrival of client requests has been found to have a
diurnal pattern [39]–[41], which follow a Poisson process.
The parameters of this process depend on the nature of the
video service [41]. We thus model clients’ arrivals as a poisson
process with arrival times that vary during the day. Videos
typically last between 1 and 2 h, and the length of each video
is selected randomly in this range. We profiled the energy con-
sumption of the disk array over 24 h. Unless otherwise stated,
our algorithm runs and potentially determines a new set of disk
speeds every 2 min, but it may also be invoked if the bandwidth
is inadequate. Unless otherwise stated, we set Nl to 2. We will
initially consider two sets of speeds, S2 = {2880, 7200} and
S5 = {2880, 3960, 5040, 6120, 7200}, and the set of round
lengths S = {1 s, 1.5 s, 2 s, 2.5 s, 3 s, 3.5 s, 4 s}.

Unless otherwise stated, we consider four sets of disk
configurations, identified by the number of disks and the
buffer size as follows: (20, 2 GB), (30, 2 GB), (30, 3 GB), and
(40, 3 GB). The access probability follows a Zipf distribution
with parameter θ = 0.271, which was a measured for a

real VoD application [42]. Different video encodings have
characteristic bit-rates and we considered three of the most
common: 1.5 Mb/s (MPEG1), 5 Mb/s (MPEG2 for DVD), and
9 Mb/s (MPEG2 HD) [48]. We consider a workload consisting
of 1000 video files, 300 MPEG1, 400 MPEG2 DVD, and 300
MPEG2 HD, where each video file is stored in a round-robin
fashion across the disks.

B. Effectiveness of the Heuristic Algorithm

We found the optimal solutions to RSSP , by running an
lp−solve program [36], and compared TPHA with the optimal
solutions for eight sets of disk configurations: (10, 1 GB), (15,
1.5 GB), (20, 2 GB), (25, 2.5 GB), (30, 3 GB), (35, 3.5 GB),
(40, 4.0 GB), and (45, 4.5 GB). Here we are considering the
S5, with five speeds, and the average time between the arrivals
of video requests is 4 s.

Table III shows the percentage difference between the result
from TPHA and the optimal value. These results suggest that
TPHA can provide a near-optimal solution to RSSP with an
0.04% of power difference on average.

Table IV shows the average time taken to produce these
results running both the lp−solve program and TPHA on a
personal computer with a quad-core 2.66 GHz Intel i5-750
CPU and 3.3 GB of RAM; it clearly shows the advantage of
TPHA is suitable for RSSP when speeds and round lengths
need to be selected quickly.

Due to the constraint of the prefetching buffer size, we
limited the number of speed changes to Nl, which affects the
round lengths and speeds that we selected. To find the abso-
lutely minimal energy consumption, we relax this constraint.
We therefore performed more simulations in which neither the
number of simultaneous speed changes nor the buffer space
was limited. Table V shows that TPHA continues to provide
a near-optimal solution, with an 0.04% average difference on
average in the power requirement.

C. Effects of Adjusting the Round Length

To evaluate the effectiveness of our scheme, we will com-
pare it with two other methods.

1) Control of variable speeds by selecting the highest
(CVH): operates like a standard video server, in that
it does not allow round length adjustment, and always
selects the highest disk speeds. The round length is cal-
culated as follows: using bit-rates from Section VII-A,

KIM AND SONG: SAVING ENERGY IN VIDEO SERVERS 575

TABLE V

Comparison Between TPHA and Optimal Results with Unlimited Speed Changes

(10, 1 GB) (15, 1.5 GB) (20, 2 GB) (25, 2.5 GB) (30, 3 GB) (35, 3.5 GB), (40, 4 GB) (45, 4.5 GB)
0.01% 0.05% 0.07% 0.02% 0.05% 0.05% 0.04% 0.01%

Fig. 3. Energy consumption over 24 h against aggregate access rate. (a) (20, 2 GB). (b) (30, 2 GB). (c) (30, 3 GB). (d) (40, 3 GB).

we determine an average bit-rate of 5.15 Mb/s across all
the videos, and hence obtain a round length that can
be expected to balance disk bandwidth against buffer
size [29] in the aggregate; the closest round length in the
list S is then selected. This is effectively the standard
scheme for an array of single-speed disks running at
7200 RPM.

2) Control of variable speeds by selecting the lowest
(CVL): is similar to CVH in that it does not allow
round length adjustment, but it does allow changes in
disk speeds, and selects the lowest speed level that does
not exceed the disk utilization limit. This keeps power
consumption as low as possible without any need to
change the round length.

1) Impact of Aggregate Access Rate: The aggregate access
rate determines the disk loads, and hence affects energy
consumption. We examined how this effect depends on buffer
size and the number of disks, with the results shown in Fig. 3.
The TPHA scheme exhibits the best performance under all
workloads, using between 1% and 26% less energy than CVL
and between 33% and 55% less than CVH. On average, it
saves 13% more energy than CVL, and 48% more than CVH.
It is clear that adjusting the round length gives the disks more
opportunities to reduce their speeds.

In more detail, we note the following differences between
the performance of TPHA and CVL: a) except that the load
is high (e.g., interarrival time is 4 s); the energy gap is more
pronounced when only two speeds are allowed instead of five
speeds; b) when the resource is adequate (40, 3 GB) and the
load is light, the energy gap is negligible; and c) the gap

increases as loads increase when five speeds are supported. We
can also see that the workload has little effect on the energy
consumption with CVH, because the difference between idle
and active power is small. Reducing disk loads does allow the
disks to stay in idle mode for longer, but this saves little energy.
Conversely, the aggregate access rate has a great impact on
both CVL and TPHA. We also observe that TPHA and CVL
use less energy with five disk speeds rather than two, because
more accurate matching of speeds to workload is possible.

2) Diurnal Access Patterns: Video server loads typically
follow a diurnal cycle, with peaks usually occurring between
11 A.M. and 4 P.M. [39]–[41]. We reflect this by hourly changes
to the rate at which requests arrive [41]. The interarrival times
are varied between α and β seconds, where α is the peak
load. We consider the following four combinations of α and β:
(3, 9), (4, 12), (3, 15), and (4, 18).

Fig. 4 shows how the energy consumption of the three
schemes depends on (α, β). The TPHA scheme exhibits the
best performance under all workloads, using between 5%
and 27% less energy than CVL, and between 37% and 53%
less than CVH. We also observe that the differential between
TPHA and CVL is generally greater than the case when the
interarrival time is fixed, which implies that our scheme is
adapting to changing workloads effectively.

D. Effects of Different Speed Sets

We examined how the energy consumption depends on
the number of available speeds, and considered two addi-
tional sets of speeds: S3 = {2880, 5040, 7200} and S4 =
{2880, 5040, 6120, 7200}. From now on, we consider a diurnal

576 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 22, NO. 4, APRIL 2012

Fig. 4. How energy consumption depends on (α, β). (a) (20, 2 GB). (b) (30, 2 GB). (c) (30, 3 GB). (d) (40, 3 GB).

Fig. 5. Energy consumption against the number of speed sets. (a) (20, 2 GB). (b) (30, 2 GB). (c) (30, 3 GB). (d) (40, 3 GB).

access with arrival times determined by (3, 9). The results
are shown in Fig. 5, and confirm our expectation that more
allow better matching to workloads and hence reduce energy
consumption; e.g., S5 uses 2.4% and 10% less energy than S2,
and between 0.5% and 2% less than S3 and S4. However, we
see that the energy gap between S3 and S5 is much smaller
that that between S2 and S5, suggesting that increases in the
number of speeds are subject to the law of diminishing returns.

E. Number of Speed Changes

1) Effects of (α, β): We assessed the average number
of speed changes per disk for different values of α and β,
with the results shown in Fig. 6. Obviously, increasing the

workloads generally increases the number of speed changes.
If the workload is heavy but the bandwidth is inadequate
(20, 2 GB), then the number of speed changes is relatively
high. We can also see that there is no clear relationship
between the number of speeds available and the number of
speed changes.

2) Effect of the Time Period: In the foregoing tests, our
algorithm was executed every 2 min, and when there is a
disk bandwidth shortage. We now examine how this period
affects the number of speed changes when α is 3 and β is
9. The periods we tried were 4, 8, 20, 60, 120, and 240 s,
and the results are shown in Fig. 7. As the period increases,
the number of speed changes decreases. We also assessed how

KIM AND SONG: SAVING ENERGY IN VIDEO SERVERS 577

Fig. 6. Average number of speed changes per disk for different values of α and β, and different numbers of available speeds. (a) (20, 2 GB). (b) (30, 2 GB).
(c) (30, 3 GB). (d) (40, 3 GB).

Fig. 7. Average number of spin-up/downs per disk against period between algorithm runs. (a) (20, 2 GB). (b) (30, 2 GB). (c) (30, 3 GB). (d) (40, 3 GB).

the energy consumption depends on the period, with the results
shown in Fig. 8. Increasing the period also reduces the energy
consumption because speed changes require significant energy,
but these savings gradually tail off and they disappear entirely
when the period is long. Increasing the period beyond 240 s
is pointless, because a shortage of disk bandwidth is always
certain to occur within 240 s.

F. Impact of Nl Values

We now examine how the value of Nl affects the energy
consumption and the number of clients admitted when five
speeds are supported, using the results given in Table VI. As

Nl increases, the energy consumption per client increases. This
is because increasing Nl requires more contingent buffer space
to store prefetched data, which reduces the available buffer
space, resulting in a shorter round length. The average round
length selected is given in Table VI, and we see that increasing
Nl decreases the round length. Because a shorter round may
increase power consumption, as shown in Fig. 2, increasing
Nl may have an adverse effect on energy consumption even
though this is very small, especially when the buffer space
is sufficient. That is because optimal speed and round length
pairs do not change drastically since the pattern of user access
to videos does not change abruptly [39], [40].

578 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 22, NO. 4, APRIL 2012

Fig. 8. How energy consumption depends on the time periods. (a) (20, 2 GB). (b) (30, 2 GB). (c) (30, 3 GB). (d) (40, 3 GB).

G. Discussion

We draw the following conclusions from our evaluation.
1) TPHA provides a near-optimal solution to RSSP and

runs in a matter of milliseconds.
2) The power consumption of single-speed disks is largely

unaffected by reductions in load, whereas multispeed
disks can respond effectively to the changing workloads
expected in video servers, yielding economies when
loads are light.

3) Adjusting the round length and disk speeds is effective
in reducing energy consumption when the workload fol-
lows the diurnal pattern expected in most VoD services.

4) Increasing the number of available disk speeds saves
energy, but the benefits gradually tail off.

5) The number of speed changes that occur increases as the
number of clients and the number of speeds increase.
If light loads are expected, a wide range of speeds is
desirable; but if loads are likely to be heavy, fewer
speeds are actually more effective.

6) Increasing Nl may require more contingent buffer space
to store prefetched data. This reduces the available buffer
space, and reduces the average round length, increasing
the energy consumption, but this effect is small.

VIII. Extensions to Our Scheme

A. Support of VBR Video

Although our scheme was developed for constant bit-rate
video, we now describe how it might be extended to support
variable bit-rate (VBR) streams. The bit-rate of a VBR video
may change during a round and this affects the disk band-
width and buffer requirements. We can address this issue by
estimating the extent of the variability which can be done by
deterministic, statistical, or predictive approaches [45], [47].
We now suggest three ways to extend our scheme to VBR.

1) A deterministic method in which the server uses the peak
data-rate requirement to calculate the bit-rate of a video.
Then, our scheme can be extended in a straightforward
manner by replacing the bit-rate of each video by
its peak rate. This approach guarantees to meet the
real-time requirements of the video; but the number
of clients is limited and server resources are under-
utilized.

2) A statistical method provides statistical service guar-
antee. It has been shown that the sum of data bit-
rates of all the clients approaches a normal distribution
using the central limit theorem [45]. This means that
the disk bandwidth and the buffer utilizations in (1)–(4)
also follow normal distributions. Based on this, we can
calculate the probability that a frame is not read in time.
To illustrate, let us define two random variables for each
disk k: rdk (j, m) is the disk bandwidth utilization with
a round length index of j and a speed level of m, and
rck is the contingent disk bandwidth utilization. Let γ

be the probability that γ% of the requested frames are
read in time. We can derive a list of candidate round
and speed pairs for disk k as follows:

{(j, m)| Rj ∈ S and P(rdk (j, m) + rck ≤ 1) ≤ γ)}.
3) A predictive method in which we calculate resource

requirements based on measurements of recent utiliza-
tion. By adding the average bandwidth requirement of a
newly requested stream to the recent average bandwidth
requirements, we can estimate the future bandwidth
requirement.

The future energy requirement may fluctuate due to the
characteristics of VBR videos; but we can estimate it using
two approaches: first, we can replace the bit-rate of each video
by its average rate, and then, estimate the energy requirement
using (5), or we can estimate the energy requirement based

KIM AND SONG: SAVING ENERGY IN VIDEO SERVERS 579

TABLE VI

Energy Consumption and Number of Clients Admitted Against Nl Values

(20, 2 GB) (30, 2 GB)
Nl 1 2 3 4 1 2 3 4

Energy (MJ) 11.6 11.45 11.57 11.8 16.4 16.14 16.29 16.51
No. of clients 9500 9274 8762 7894 11 980 11 473 10 647 9742

Average round length (s) 3.3 2.9 2.6 2.5 2.2 2 1.9 1.88
(30, 3 GB) (40, 3 GB)

Nl 1 2 3 4 1 2 3 4
Energy (MJ) 16.36 16.39 16.45 16.53 20.65 20.71 20.79 20.88
No. of clients 12 226 12 224 12 224 11 949 13 826 13 826 13 791 13 683

Average round length (s) 4 3.6 3.3 3 3.5 3 2.8 2.6

Fig. 9. Example of data placement when striping is used. (a) Disk 1.
(b) Disk 2. (c) Disk 3.

on the past average energy requirement. For example, when
a client requests a new stream, the recent power consumption
plus the average power requirement for a new client can be
used as an estimate of the subsequent power consumption.
This approach is based on the observation that the average
bandwidth requirement does not change significantly [45].

B. Support of Striping

If a video file is stored contiguously on a single disk,
then any data read from that file during a round involves the
overhead of a single seek. But if a file is striped across several
disks, then changing the round length may incur additional
seek overheads because the data retrieved during a round may
be stored on more than one disk. Our scheme can be extended
to striping in a straightforward manner provided that we ensure
that each access involves only one seek.

We can guarantee that only one seek is required in each
round by splitting each video into chunks, and the selecting
the chunk size to reflect the data-rate of each video. Suppose
a video is split into chunks chm , each composed of Nu

subchunks scn
m (n = 1, . . . ,Nu) which contain the amount of

data that can be retrieved during a round of length sr . Thus, the
size of each subchunk of video stream Vi is bisr . We store Nu

subchunks contiguously in a chunk, and each chunk is placed
on the disks in round-robin fashion, as shown in the example
of Fig. 9, in which Nu = 6 and the striping width is 3. We
will use dvj to denote the jth divisor of Nu (j = 1, . . . ,NI),
where NI is the total number of such divisors.

We can now define a list of feasible round lengths S =
{Rj |Rj = dvj sr}, which is sorted into ascending order. For
example, if Nu = 6, then S = {sr , 2sr , 3sr , 6sr}. The selection
of round lengths other than Rj is not allowed because this may
lead to two or more seeks being required for one read.

If a round length is chosen from S , then each request during
a round is guaranteed to access only one disk. For example, if

the round length is set to 3sr , then accesses are redirected to
the next disk in the array every two rounds. Conversely, if 4sr
is selected, then two disks may be accessed simultaneously,
as shown in Fig. 9. In this example, chunks sc5

1 , sc6
1 , sc1

2 and
sc2

2 need to be read simultaneously.

IX. Conclusion

We have presented a new disk energy saving scheme for
video servers that use multispeed disks. We analyzed how disk
and buffer utilization depends on the retrieval period, the buffer
size, and the disk speed. We then proposed a new data retrieval
and buffer management scheme in which the retrieval period
and the speed of each disk can be dynamically changed to
adjust disk utilization, with the aim of minimizing the total
energy consumed by the disks while limiting the number of
speed changes. We also extended our scheme to reduce the
number of disk speed changes and to support striping.

Experimental results have shown that: 1) our scheme
achieves appreciable energy savings under all workloads, and
2) increasing the number of available speeds reduces energy
consumption, but increases the number of speed changes.
These observations provide a guideline for the design of video
servers with multispeed disks.

There are several potential areas where our scheme could
be extended in our future work. First, we are in the process of
adding support for servers that have to provide both video and
transactional data. One possible way to design an algorithm
for these servers is to reserve some fraction of the disk
bandwidth to handle the transactional workload. Second, we
are interested in extending our scheme to servers which use
parity information for error correction, such as those based
on RAID5. We are hoping to implement our scheme on real
video servers, allowing us to measure actual disk energy
consumption.

Acknowledgment

The authors would like to thank the anonymous reviewers
for their valuable comments and suggestions.

References

[1] R. Bianchini and R. Rajamony, “Power and energy management for
server systems,” IEEE Comput., vol. 37, no. 11, pp. 177–190, Nov. 2004.

[2] Q. Zhu and Y. Zhou, “Power aware storage cache management,” IEEE
Trans. Comput., vol. 54, no. 5, pp. 587–602, May 2005.

580 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 22, NO. 4, APRIL 2012

[3] Z. Ge, P. Ji, and P. Shenoy, “Design and analysis of a demand adap-
tive and locality aware streaming media server cluster,” ACM/Springer
Multimedia Syst. J., vol. 13, no. 3, pp. 235–249, Sep. 2004.

[4] Youtube Bandwidth: Terrabytes Per Day [Online]. Available:
http://blog.forret.com/2006/05/youtube-bandwidth-terabytes-per-day

[5] B. Moore. (2002, Aug.). Taking the data center power and
cooling challenge. Energy User News [Online]. 27. Available:
http://www.sustainablefacility.com/articles/taking-the-data-center-
power-and-cooling-challenge

[6] Q. Zhu, Z. Chen, L. Tan, Y. Zhou, K. Keeton, and J. Wilkes, “Hibernator:
Helping disk arrays sleep through the winter,” ACM Oper. Syst. Rev.,
vol. 39, no. 5, pp. 177–190, 2005.

[7] American Power Convention, Determining Total Cost of Ownership for
Data Centers and Network Room Infrastructure, White Paper #6, 2003.

[8] S. Gurumurthi, “Power management of enterprise storage systems,”
Ph.D. dissertation, Dept. Comput. Sci. Eng., Pennsylvania State Univ.,
University Park, Aug. 2005.

[9] Symmetrix 3000 and 5000 Enterprise Storage Systems Product Descrip-
tion Guide [Online]. Available: http://www.emc.com/1999

[10] F. Chen and X. Zhang, “Caching for bursts (c-burst): Let hard disks
sleep well and work energetically,” in Proc. ACM Symp. Low Power
Electron. Des., Aug. 2008, pp. 141–146.

[11] A. Papathanasiou and L. Scott, “Energy efficient prefetching and
caching,” in Proc. USENIX Annu. Tech. Conf., Jun. 2004, pp. 255–268.

[12] Y. Won, J. Kim, and W. Jung, “Energy-aware disk scheduling for soft
real-time I/O requests,” Multimedia Syst. J., vol. 13, no. 5, pp. 409–428,
Feb. 2008.

[13] T. Xie, “SEA: A striping-based energy-aware strategy for data placement
in RAIS-structured storage systems,” IEEE Trans. Comput., vol. 57,
no. 6, pp. 748–761, Jun. 2008.

[14] M. Song, “Dynamic buffer allocation for conserving disk energy in
clustered video servers which use replication,” in Proc. EUC Conf., Aug.
2006, pp. 193–203.

[15] S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, and H. Franke,
“Reducing disk power consumption in servers with DRPM,” IEEE
Comput., vol. 36, no. 12, pp. 59–66, Dec. 2003.

[16] Hitachi Global Storage Technologies, Hitachi Power and Acoustic
Management: Quietly Cool, White Paper, Mar. 2004.

[17] H. Yada, H. Ishoioka, T. Yamakoshi, Y. Onuki, Y. Shimano, M. Uchida,
H. Kanno, and N. Hayashi, “Head positioning servo and data channel
for HDDs with multiple spindle speeds,” IEEE Trans. Magnet., vol. 36,
no. 5, pp. 2213–2215, Sep. 2000.

[18] Nexsan [Online]. Available: http://www.nexsan.com/sataboy/automaid.
php

[19] E. Pinheiro and R. Bianchini, “Energy conservation techniques for disk-
array-based servers,” in Proc. ACM/IEEE Conf. Supercomput., Jun. 2004,
pp. 88–95.

[20] E. Pinheiro, R. Bianchini, and C. Dubnicki, “Exploiting redundancy
to conserve energy in storage systems,” ACM Performance Eval. Rev.,
vol. 4, no. 1, pp. 15–26, Jan. 2006.

[21] X. Yao, H. Zhu, and J. Wang, “Exploiting in-memory and on-disk
redundancy to conserve energy in parity disk array,” IEEE Trans.
Comput., vol. 57, no. 6, pp. 733–747, Jun. 2008.

[22] S. Son and M. Kandemir, “Energy-aware data prefetching for multi-
speed disks,” in Proc. ACM Conf. Comput. Frontiers, 2006, pp. 105–114.

[23] M. K. R. Rao, and S. Vrudhula, “Disk drive energy optimization for
audio-video applications,” in Proc. ACM Conf. Compilers, Architect.
Syn. Embedded Syst., Sep. 2004, pp. 93–103.

[24] W. G. X. Liu, and P. Shenoy, “A time series-based approach for
power management in mobile processors and disks,” in Proc. ACM
Workshop Netw. Oper. Syst. Support Digital Audio Video, Jun. 2004,
pp. 74–79.

[25] L. Cai and Y. Lu, “Energy management using buffer memory for
streaming data,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.,
vol. 24, no. 2, pp. 141–152, Jul. 2005.

[26] N. Pettis, L. Cai, and Y. Lu, “Statistically optimal dynamic power
management for streaming data,” IEEE Trans. Comput., vol. 55, no. 7,
pp. 800–814, Jul. 2006.

[27] E. Chang, “Storage and retrieval of compressed video,” Ph.D.
dissertation, Dept. Electric. Eng. Comput. Sci., Univ. California
Berkeley, Berkeley, 1996.

[28] E. Chang and H. Garcia-Molina, “Effective memory use in a media
server,” in Proc. VLDB Conf., Aug. 1997, pp. 496–505.

[29] M. Song and H. Shin, “Replication and retrieval strategies for
resource-effective admission control in multi-resolution video servers,”
Multimedia Tools Applicat. J., vol. 28, no. 3, pp. 89–114, Mar.
2006.

[30] H. Vin, S. Rao, and P. Goyal, “Optimizing the placement of multimedia
objects on disk arrays,” in Proc. IEEE Int. Conf. Mutimedia Comput.
Syst., May 1995, pp. 158–165.

[31] C. Chou, L. Golubchik, and J. Lui, “Striping doesn’t scale: How to
achieve scalability for continuous media servers with replication,” in
Proc. IEEE Int. Conf. Distrib. Comput. Syst., Apr. 2000, pp. 64–71.

[32] M. Reisslein, K. Loss, and S. Shrestha, “Striping for interactive video:
Is it worth it?” in Proc. IEEE Int. Conf. Multimedia Comput. Syst., Jun.
1999, pp. 635–668.

[33] E. Chang and A. Zakhor, “Disk-based storage for scalable video,” IEEE
Trans. Circuits Syst. Video Technol., vol. 7, no. 5, pp. 758–770, Oct.
1997.

[34] M. Song, “Energy-aware data prefetching for multi-speed disks in video
servers,” in Proc. ACM Multimedia Conf., Oct. 2007, pp. 755–758.

[35] D. Pisinger, “Algorithms for knapsack problems,” Ph.D. dissertation,
Dept. Comput. Sci., Univ. Copenhagen, Copenhagen, Denmark, 1995.

[36] Introduction to lp solve 5.5.2.0 [Online]. Available: http://lpsolve.
sourceforge.net/5.5

[37] T. Bisson, S. Brandt, and D. Long, “A hybrid disk-aware spin-down
algorithm with I/O subsystem support,” in Proc. IEEE Int. Performance,
Comput. Commun. Conf., Apr. 2007, pp. 236–245.

[38] Panel Computer Hard Disk Drive Precautions [Online]. Available:
http://www.pro-face.com/support/technical/00apr3.htm

[39] J. Almeida, J. Krueger, D. Eager, and M. Vernon, “Analysis of
educational media server workloads,” in Proc. Netw. Oper. Syst.
Supports Digital Audio Video, Jun. 2001, pp. 21–30.

[40] F. Johnsen, T. Hafse, C. Griwodz, and P. Halvorsen, “Workload
characterization for news-on-demand streaming services,” in Proc. Int.
Performance Comput. Commun. Conf., Apr. 2007, pp. 314–323.

[41] W. Tang, Y. Fu, L. Cherkasova, and A. Vahdat, “Medisyn: A synthetic
streaming media service workload generator,” in Proc. Netw. Oper.
Syst. Supports Digital Audio Video, Jun. 2003, pp. 12–21.

[42] A. Dan, D. Sitaram, and P. Shahabuddin, “Dynamic batching policies
for an on-demand video server,” ACM/Springer Multimedia Syst. J.,
vol. 4, no. 3, pp. 112–121, 1996.

[43] J. Go and M. Song, “Adaptive disk power management for portable
media players,” IEEE Trans. Consum. Electron., vol. 54, no. 4, pp.
1755–1760, Nov. 2008.

[44] J. Kim, A. Yang, and M. Song, “Exploiting flash memory for reducing
disk power consumption in portable media players,” IEEE Trans.
Consum. Electron., vol. 55, no. 4, pp. 1997–2004, Nov. 2009.

[45] H. Vin, P. Goyal, and A. Goyal, “A statistcal admission control
algorithm for multimedia storage servers,” in Proc. ACM Multimedia,
Oct. 1994, pp. 33–40.

[46] M. Song and H. Shin, “A QoS degradation policy for revenue
maximization in fault-tolerant multi-resolution video servers,” IEEE
Trans. Consum. Electron., vol. 49, no. 2, pp. 392–402, May 2003.

[47] X. Jiang and P. Mohapatra, “Efficient admission control algorithms
for multimedia servers,” ACM Multimedia Syst. J., vol. 7, no. 4, pp.
294–304, Jul. 1999.

[48] Bit Rate [Online]. Available: http://en.wikipedia.org/wiki/bitrate

Manjong Kim (S’11) received the B.S. degree
in computer engineering from Inha University,
Incheon, Korea, in 2009. He is currently pursuing the
M.S. degree from the School of Computer Science
and Information Engineering, Inha University.

His current research interests include embedded
software and multimedia systems.

Minseok Song (M’07) received the B.S. and M.S.
degrees in computer engineering in 1996 and 1998,
respectively, and the Ph.D. degree in electrical en-
gineering and computer science in 2004, all from
Seoul National University, Seoul, Korea.

Since September 2005, he has been with the
School of Computer Science and Information Engi-
neering, Inha University, Incheon, Korea, where he
is currently an Associate Professor. His current re-
search interests include real-time, embedded systems
and multimedia systems.

