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Excitons in quantum dots with parabolic confinement

15 MAY 1992-I

Weiming Que"
Department ofPhysics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6

(Received 3 June 1991)

We study excitons in quantum dots with parabolic confining potentials, by solving the electron-hole
effective-mass Hamiltonian. We obtain an exact solution for excitons in quantum dots. The exact solu-

tion can be obtained in this case because the parabolic form of the confining potential allows the separa-
tion of the center-of-mass coordinate and the relative coordinate. The center-of-mass motion of the exci-
ton is a harmonic oscillator. Various approximation methods can now be tested against this exact solu-
tion. We compare our exact results with results produced by the configuration-interaction method.

I. INTRODUCTION

The study of low-dimensional systems has received
much attention in recent years, especially due to the
discovery of such effects as the quantum Hall effect in
two-dimensional (2D) systems. The physics in 2D or
even lower-dimensional systems presents intriguing cha1-
lenges both theoretically and experimentally. With the
development of modern technology, it is now possible to
produce (quasi-)OD systems that confine electrons in all
three spatial dimensions. The term "quantum dot" refers
to such systems. In the most common usage, it refers to
artificially made semiconductor structures using tech-
niques such as etching or grid metal gates. ' They typical-
ly have a disklike shape, a few hundred nanometers in di-
ameter, and a few nanometers thick. In such small struc-
tures electron states are quantized into discrete energy
levels, with energy spacings of a few meV or more. The
same term quantum dot has also been used to refer to
semiconductor microcrystallites, which also have the
property that the electron states are discretely quantized.
Their shape is more like a sphere.

Optical methods are convenient experimental means
for studying the properties of quantum-dot systems.
They have been used to study various elementary excita-
tions in quantum dots. One type of elementary excita-
tions are collective modes (the analog of plasmons)
which have been studied in absorption experiments. '

Another type of elementary excitations are excitons,
which can be created by photons near an absorption
edge. They have been the center of attention of many ex-
perimentalists ever since the fabrication of quantum dots
was made possible. Excitons in quantum dots have been
observed in photoluminescence experiments performed
on multidot samples, and single-dot samples. On the
theoretical side, studies of excitons in microcrystallites
have been carried out by variational methods and other
approximation methods. Recently a numerical matrix-
diagonalization scheme has been used by Hu, Lindberg,
and Koch to study excitons in microcrystallites. For ex-
citons in artificially made disklike quantum dots, several
theoretical studies have been published. ' The work of
Bryant has attracted much attention, who used both
variational and configuration-interaction (CI) approaches

to calculate the ground-state properties of excitons in
quantum dots. Since the problem presented by excitons
in quantum dots is in general too complicated for exact
solutions, so far no exact solution has been reported in
the literature.

In the previous theoretical studies of excitons in quan-
tum dots, a square-well potential has been widely used as
the model potential that confines both electrons and
holes. The wide use of this model is mostly due to its
simplicity. Recent calculations of confining potentials by
Kumar, Laux, and Stern show that the confining poten-
tial for electrons in a quantum dot can be approximated
reasonably well by a parabolic potential. As an interest-
ing theoretical model, we consider quantum dots with
parabolic confining potentials for both electrons and
holes. The advantage of the model is that it makes an ex-
act solution of the electron-hole effective-mass Hamil-
tonian possible. Here we present the exact results of this
model, and compare to the results by the CI method.
The study of this model has been motivated by the exact
"generalized Kohn theorem, " proved recently by several
authors. ' This paper is a more detailed account of an
earlier work" on the same topic.

II. EXCITONS IN PARABOLIC QUANTUM DOTS

We start from the effective-mass Hamiltonian for an
electron-hole pair in a parabolic quantum dot,
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where the subscripts e and h represent electron and hole,
respectively, i =e, h. The second term in (l) produces
parabolic confinement. The Coulomb interaction is
screened by the background dielectric constant e. Since
the first two terms in (1) are both quadratic, and the
Coulomb term depends only on the relative coordinate
r=r, —r&, it is not di%cult to see that the Hamiltonian is
separable in terms of the relative coordinate r and
center-of-mass coordinate R, defined by
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We also define the total mass M=m, +mz and the re-
duced mass p=m, mi, /M. The electron and hole mo-

menta p, and pI, can be expressed in terms of the relative
momentum p=(fi/i }V„and the center-of-mass momen-

tum P=(iii/i)VR, as

equia*=
pe

(12)

There are also two energy scales. One is the energy quan-
ta due to confinement fur, which is related to L by

m, m&
P =P+p Pa P+p

M

Substituting (2) and (3) in the Hamiltonian yields
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The other energy scale is the effective rydberg, '

~«e pe
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(13)

(14)

%(r„rI,}=y(R)$(r}, (6)

where y(R) is the wave function of a harmonic oscillator.
The exciton energy can be written as the sum of the
center-of-mass part and the relative motion part,
E=ER+E,. The problem now reduces to solving the
relative-motion Hamiltonian

2 2

H — +—pro r
2p ' elrl

(7)

Since the second and the third terms in (7) depend on the
magnitude of r only, the angular part of the Hamiltonian
is solved trivially. In particular, for the exciton ground
state, the wave function depends on lrl only, (7) gives a
1D differential equation, which we solve numerically by
computer.

Quantities of interest include the exciton oscillator
strength, and the electron-hole separation. In the
envelope-function approximation, the exciton oscillator
strength can be written as '

2P 2f4(r„r, )dr,
~0 ex 0

(8)

where P describes intracell matrix-element effects, mo is
the bare electron mass, E,„—EO=E+E~, and Eg is the
optical energy gap. From (6) and (2) we have

0 (r„r, ) =y(r, )P(0) .

Thus (8) can be rewritten as

The explicit separability of the r and R coordinates in (4)
means that the exciton wave function %(r„r„),satisfying
the Schrodinger equation

HV(r„ri, )=EiII(r„ri, ),
can be written as

The competition between the two length scales, or
equivalently the competition between the two energy
scales, defines the strong-confinement regime, where
L «ag, or i)ico»%', and the weak-conSnement regime,
where L »aii, or fico «%'.

The above discussion is applicable to both artificilly
made disklike quantum dots and semiconductor micro-
crystallites. In the rest of the paper we concentrate on
artificially made disklike quantum dots. Thus the inter-
nal motion within quantum dots can be regarded as two
dimensional.

It is not the intention of the paper to test all approxi-
mation methods used for studying excitons in quantum
dots against our exact solution. Here we choose to test
the accuracy of the configuration-interaction method of
Bryant. ' In the original CI method, the wave functions
in the strong-confinement limit are chosen as the basis
set, and the Hamiltonian matrix is diagonalized numeri-
cally. Since the Hamiltonian matrix is in principle
infinite in size, an approximation is made by choosing a
finite number of basis states, making the matrix finite. If
the exciton ground-state energy changes little when extra
basis states are inc1uded, the result is then considered to
have converged with the chosen number of basis states.

We note that the Hamiltonian (7) can be solved analyti-
cally both in the strong- and weak-confinement limits. In
the strong-confinement 1imit where the Coulomb term is
neglected, we have a harmonic oscillator. In the weak-
confinement limit where the confinement term is neglect-
ed, we have a hydrogenic problem. We can therefore
choose the wave functions of either limit as the basis set.
Each basis set allows the fastest convergence near its ap-
propriate limit. We obtain numerical results by the CI
method using both basis sets, and compare to the exact
result in Figs. 1 to 3. Before we analyze the numerical re-
sults, we spell out the details of both basis sets below.

f.„= lg(0)l' Jy(r, )«,
~0 ex 0

(10)
A. Strong-confinement regime

The electron-hole separation r, in the exciton ground
state is defined by r,~= (r ), where the angular brackets
denote the expectation value in the ground state.

The Hamiltonian (7) contains two length scales. One is
the size of the quantum dot, defined by

L =&4/IJ, ri) .

The other length scale is the effective Bohr radius

In the strong-confinement regime, the natural basis set
of wave functions are those of the 2D harmonic oscilla-
tor. Since the Hamiltonian (7} conserves the azimuthal
symmetry, it is advantageous to use polar coordinates
rather than Cartesian coordinates. The eigenenergies and
eigenstates of a 2D harmonic oscillator in terms of polar
coordinates, angular momentum quantum number m,
and radial quantum number n are given by
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where m =0,+1,+2, . . . , n =0, 1,2, . . . , p=rv @co/A,
and L„are associated Laguerre polynominals. From
(15) we know that the energy is the lowest when m =0.
Since the full Hamiltonian conserves the azimuthal sym-
metry, it is diagonal in m. For the ground-state exciton,
we only need to consider states with m =0. With the
basis set (16) we find (n ' & n )

n
'

( 1)mn. ( I ( —,'+n —m )
(n', 0!H ~n, O) =(2n+ 1 )fico5„„. p—co/fi g '

i I ( —,'+m )
~ =o (n' m—)!(m!) n! I —,

' —m
(17)

Note that I ( —,'+m)/I ( —,
' —m)=( —1) [(2m —1)!!]/4 .

From (17) it is clear that the off-diagonal elements will be
much smaller than the diagonal ones, provided that

2

A'a) )) &pc@/iii . (18)

This condition is equivalent to fico))A" or L «aii. To
have a quantitative idea, we calculate A' and ai'i using
realistic parameters for GaAs quantum dots: @=13.1,
m, =0.067mo, mi, =0.09mo (light-hole mass), or
p =0.0384m c. We obtain %' =6. 1 meV and ai'i = 18. 1

nm. GaAs quantum dots made today have typically a
quantization energy of —1 meV and a physical lateral
size of —100 nm. The effective size of a quantum dot
should be smaller than the physical size because of edge
depletion. Comparing these numbers, we conclude that a
typical GaAs quantum dot made today is not in the
strong-confinement regime defined by (18).

The matrix (17) is a real symmetric matrix. It can be
diagonalized numerically, giving us the ground-state en-

ergy and wave function. Suppose the ground-state wave
function is given by

PG(0) =&pco/irA'ga„. (23)

mo(E,„Eo) M— (24)

B.Weak-confinement regime

In the weak-confinement regime, the natural basis set
of wave functions are those of the 2D hydrogenic prob-
lem. The Schrodinger equation for the 2D hydrogenic
Hamiltonian Ho= p /2p e /er is ex—actly solvable, giv-

ing energy eigenvalues and eigen functions'

2(n+ Iml+-,')' '

~n, m ) = —e' C„R„(r),1

&2n.

(„)— ! !L im!( )
—P/2

(25)

(26a)

Therefore the oscillator strength for the ground-state ex-
citon is given by

yG
= ga„~n, o) . (19) 2T

p
as(n + ~m ~+ —,')

(26b)

Using

(n', O~r ~n, O) = [(2n+1)5„„—(n +1) „5„&+
pro

—n5„„,], (20)

r, =L g [(2n +1)a„—(n +1)a„a„+,—na„a„,]

(21)

we find the electron-hole separation in the ground state to
be

n!
aii (n+2~m

~
)!(2n +2~m ~+ I)

1/2

(26c)

where m =0,+1,+2, . . . , n =0, 1,2, . . . . Note that p de-
pends on both n and m. Again, since smaller ~m ~

gives
lower energy in (25) and the full Hamiltonian conserves
the azimuthal symmetry, we only need to consider states
with m =0 for the ground state. With the basis set (26)
we find

(n+ —')'
(n', O~r'~n, O& =a/'

8(n'+ —,') ~

The exciton oscillator strength (10) is related to the
center-of-mass wave function y„(R), which is given by
replacing p by M in (16). The integral in (10) is equal to

fy„(R)d R=( —1)"25 o&mfi/Mco . (22)

Using (19) and (16), we find that

n+
2

X dx x exp ——1+
o 2 n'+ —,

'

n+ —,
'

XL„(x)L„.
+2

(27)
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The Hamiltonian matrix is given by

(n', O~H~n, O) =—,5„„+ co (n', O~r ~n, O) .
2(n+ —,

'
)

(28)

0.8-

The off-diagonal elements will be much smaller than the
diagonal ones provided that

0.5-

%' ))@co a~ = (A'co )
(29)

This condition is equivalent to A'co «A', or L ))ag.
The ground-state wave function can again be written in

the form Pa= g„a„~n,O), with the ket now represent-

ing the basis states (26). The electron-hole separation in
the ground state is given by

0.2

rs'= Xa.a. (n' 0~ "~n»
nn'

(30) 20
I
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L (nm)
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To calculate the exciton oscillator strength, we find from
(26) that C„0=4I[az (2n + 1) ~ ],R„o(0)= 1; therefore FIG. 2. Electron-hole separation in the exciton ground state.

Solid curve, exact result; dashed curves, CI result.
a„

a~ &2m „(2n + 1)
G(0)= (31)

The oscillator strength for the ground-state exciton is
given by

64p gA' an

mo(E,„—Eo) Mfico „(2n+1) (32)

C. Numerical results

Figures 1 —3 show the numerical results of the exact
solution (solid curves), and the CI method (dashed
curves). Figures already presented in the earlier work"

will not be repeated here. The numerical results of the CI
method are obtained by diagonalizing the Hamiltonian
matrix with the basis set (16) or (26). In the strong-
confinement regime, states with n and n ' from 0 to 27 are
included, forming a 28X28 Hamiltonian matrix. In the
weak-confinement regime, the convergence rate is faster,
and states with n and n' from 0 to 22 are included. For
comparison, we note that Ref. 2 used 18 states including
difFerent angular momentum states, and Ref. 14 used 12
states for square-shaped quantum dots. To produce the
figures, we used m, =0.067mo, m&=0. 09mo, a=13.1,
Eg =1.51 eV, and P Imo= 1 eV. These parameters are
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FIG. 1. Exciton ground-state binding energy. Solid curve, ex-
act result; dashed curves, CI result.

FIG. 3. Oscillator strength for the exciton ground state.
Solid curve, exact result; dashed curves, CI result.
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realistic for GaAs quantum dots. With these parameter
values, the intermediate confinement regime is in the
neighborhood of L -az = 18 nm.

Figure I shows the exciton ground-state binding ener-
gy. The binding energy for the ground-state exciton is
defined by

Eb —%co E . {33)

The exact solution shows that for L & 2b, the binding en-
ergy becomes insensitive to the size of the quantum dot.
This is an indication of the importance of electron-hole
correlation. The CI result using the weak-confinement
limit basis set is very accurate for L &20 nm. As L de-
creases, the binding energy increases. In the "strong-
confinement approximation, " where correlation between
the electron and hole is neglected, Eb becomes zero. Fig-
ure 1 shows that this approximation is never realized, be-
cause the binding energy increases monotonically as the
dot size L decreases. However, in the strong-confinement
regime the increase in Eb is slower than the increase in
ground-state energy E, because the later is influenced by
the faster increase in confinement energy.

Figure 2 shows the electron and hole separation r, nor-
malized by the dot size L. As L increases from zero,
r, /L decreases from 1. The CI result with the strong-
(weak-) confinement basis set is accurate for L ( {) )20
nm. The exact result can be approximated very well by
joining and terminating the two dashed curves at their
crossing point.

Figure 3 shows the oscillator strength. The CI result
with the weak-confinement basis set almost coincides
with the exact result in the figure. This is because for
small L where deviation is expected, the magnitude of the
oscillator strength itself is small. Experiments are not
directly related to f,„,rather to the normalized oscillator
strength f,„/L . In the plot of f,„/L against L in Ref.
11, it is shown that deviations appear for both basis sets,
and for L (az the normalized oscillator strength is
enhanced.

From our results we find that if the strong-confinement
basis set is used in the CI method, reasonably accurate
exciton energies are obtained with the chosen number of

basis states even for L & a&. However, for other quanti-
ties which depend on the exciton wave function, large er-
rors occur for L & az. This suggests that using the exci-
ton energy only to test convergence can be deceiving, be-
cause one can still get large errors for r, and f,„while the
exciton energy has converged. Our results show that in-
stead of using one basis set for the whole range of L, the
CI method can produce very good results if two basis sets
are used.

nZ. DZSCUSSrON

The method used here to obtain exact results works
only in a very special case, where the confining potentials
for both electrons and holes are parabolic and give the
same energy spacings. It does not work in the presence
of a magnetic field either. The energy spectra of quantum
dots with hard wall and parabolic confining potentials in

the presence of a magnetic field have been discussed by
Geerinckx, Peeters, and Devreese. ' In real quantum
dots, we expect the confining potentials to deviate from
the ideal form assumed here. Thus the method is only
useful in the sense that one can use it to test approximate
methods for the special case considered here.

In principle, for real quantum dots one should consider
the finite thickness of a quantum dot, which is neglected
in the calculations of Sec. II. One expects that the finite
extent of electron and hole wave functions in the vertical
direction will reduce the exciton binding energy. Howev-
er, corrections due to the finite thickness should be small
if the confinement in the vertical direction is very strong.

In conclusion, the effective-mass Hamiltonian for exci-
tons in parabolic quantum dots is solved exactly. The CI
method is tested against the exact solution, The parabol-
ic confinement model provides a gauge by which the va-
lidity of various approximation methods for excitons in
quantum dots can now be verified.
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