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Optical nonlinearities in asymmetric quantum wells due to resonant intersubband transitions are ana-
lyzed using a compact density-matrix approach. The large dipolar matrix elements obtained in such
structures are partly due to the small effective masses of the host materials and are interpreted in terms
of the participation of the whole band structure to the optical transitions. The other origin of the large
second-order susceptibilities lies in the possibility of tuning independently the potential shape and the
width of asymmetric quantum wells in order to obtain resonances (single or double) for a given excita-
tion wavelength. Using a model based on an infinite-barrier quantum well, we have obtained very gen-
eral and tractable formulas for second-order susceptibilities at resonance. This model allows us to fix ad-
ditional fundamental quantum limitations to second-order optical nonlinearities. The "best potential
shapes" maximizing the different susceptibilities are obtained, together with scaling laws as a function of
photon energy. Experimental results on different GaAs/Al Ga& „As asymmetric quantum wells opti-
mized for second-harmonic generation and optical rectifications are given, with optical rectification
coefficients more than 10 higher than in bulk GaAs. These asymmetric quantum wells may be con-
sidered as giant "pseudomolecules" optimized for large optical nonlinearities in the 8—12-pm range.

I. INTRODUCTION

Thanks to the recent progress in epitaxy techniques, it
is now possible to grow alternating layers of semiconduc-
tors with different band-gap energies with a thickness
control down to one atomic layer. It is now well estab-
lished that these systems behave, as far as the electron
motion is concerned, as a succession of potential barriers
and wells. If the width of the potential well is less than
the de Broglie wavelength of the electrons in the material
(e.g. , less than = 15 nm in GaAs), the motion of the elec-
trons may be considered, at sufficiently low temperature,
as quantized in the direction normal to the growth axis. '

The electrons are quantized into subbands where their
wave functions in the growth direction have the form of
envelope functions with an extension equal to the well
width, i.e., in the few-nanometer range. Electromagnetic
waves may induce electronic transitions between these
subbands. The dipole matrix elements associated to these
intersubband transitions (ISBT) have the same order of
magnitude as the quantum-well width leading to extreme-
ly large absorption. These large absorptions have been
observed in GaAs/Al Ga, „As multiple quantum wells
(MQW's) by West and Eglash and subsequently used by
Levine et al. in a class of infrared photoconductive
detectors.

The dipole matrix elements are thus in the few-
nanometer range instead of the few picometers obtained
in usual molecular or ionic systems. Since second-order
optical susceptibilities have a cubic dependence relative
to the dipole matrix elements, strong second-order opti-
cal nonlinearities are expected in MQW s insofar as in-
version symmetry is broken. In their pioneering work,
Gurnick and DeTemple have suggested obtaining this
asymmetry by growing Al„Ga, As MQW's with asym-

metric composition gradients of Al in the growth direc-
tion. In their paper, these authors have consider an
asymmetric Morse potential and have shown that non-
linearities of 10 to 100 times larger than in bulk materials
could be theoretically possible. Kurghin later suggested
using asymmetric coupled quantum wells. Ahn and
Chuang proposed to bias a symmetric QW electrically to
obtain this asymmetry. This has been realized by Fejer
et al. who obtained a second-harmonic-generation
coefficient more than 70 times higher than in bulk GaAs.
In a more recent work, Yuh and Wang suggested that the
use of a step-quantum-well (QW) structure, which con-
sists of a small well inside a bigger one, would be easier to
fabricate and could yield also large second-harmonic non-
linearities. Rosencher et al. have shown that these step
QW's could be designed so that the absorption could be
doubly resonant, leading to second-harmonic-generation
(SHG) coeKcients more than three orders of magnitude
higher than in bulk GaAs. ' These latter authors have
realized di6'erent step QW's and observed indeed ex-
tremely large second-order optical nonlinearities (SHG,
optical rectification). " ' These huge nonlinearities in
step QW's have been confirmed by Karunasiri, Mii, and
Wang, who measured linear Stark effects as high as 0.44
meV cm/kV. '

The purposes of this paper are the following. In Sec.
II, we shall discuss in some detail the physical origin of
the large dipole moments of ISBT in GaAs quantum
wells. In particular, we will show that these large oscilla-
tor strengths originate from the contribution of the opti-
cal transitions between the conduction band and all the
other bands of the crystal structure. In Sec. III, we will
present a compact description of the density-matrix for-
malism which leads to simple expressions of second-order
susceptibilities in QW s, without resorting to general,
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complete, and cumbersome formulations of optical non-
linearities. This description leads to particularly simple
and i11ustrative formulas for the various effects. The
second-order nonlinearity coefIicients are found to be
proportional to the product of overlapping integrals be-
tween the envelope wave functions of the different sub-
bands. Applying this formalism to step quantum wells
considered as a physical model for resonant optical non-
linearities, one may thus analyze optical nonlinearities in
terms ofpurely geometrical factors and thus fix additional
fundamental quantum limitations to second order -suscep
tibilities, which is described in Sec. IV. These scaling
rules are different from preceding ones, such as those of
Flytzanis' or Oudar and Zyss, ' in that in our approach
only resonant transitions are envisioned and mostly
geometrical considerations are involved. In Sec. V, we
will give our experimental results on different asymmetric
QW's optimized for second-harmonic generation and op-
tical rectification. We will show that these asymmetric
QW's (AQW's) behave as giant "pseudomolecules" opti-
mized for large optical nonlinearities in the 8—12-pm
range.

II. EFFECTIVE-MASS EFFECT
ON THE OSCILLATOR STRENGTHS
IN INTERSUBBAND TRANSITIONS

In this section, we will mostly focus on the eigenfunc-
tions involved in ISBT and will analyze in some detail the
connections between the oscillator strengths and the
effective mass. Electrons in a semiconductor quantum
well are particularly well described by the effective-mass
Hamiltonian'

g2 g2 g2 g2+ + +V(z),
$y 6z

where z represents the growth direction, A is Planck's
constant, and V(z) is the profile of the conduction-band
potential in the quantum well. The conduction-band

effective mass m * will be taken constant in the rest of the
paper, i.e., we neglect band nonparabolicity for the sake
of simplicity. Moreover, screening effects due to the dop-
ing of the QW's and the electron gas itself are neglected
in this approach. In particular, it means that the
plasmon shift (in the few meV for usual doping concen-
tration) of the optical resonances is not taken into ac-
count' and that the electrostatic screening length in the
quantum well is assumed large compared to the QW
thickness, which is reasonable. The eigenfunctions
%„k(r) and the eigenenergies e„are solutions of the
Schrodinger equation H +„i,(r ) =e„ i,ql „i, ( r ) and are
given by

e„„(r)=g„(z)u, (r)e (2)

and

fi
e„ i, =E„+

2m
(3)

Here, k~~ and r~~ are the wave vector and coordinate in the
xy plane and u, (r) is the periodic part of the Bloch func-
tion in the conduction band at k =0. g„and E„are, re-
spectively, the envelope wave function and the transverse
energy of the nth subband, solutions of the one-
dimensional Schrodinger equation Hog„(z) =E„g„(z),
where Ho is the z part of the Hamiltonian H in Eq. (l),
i.e., Ho=A /2m*d /dz + V(z). The subband energy
dispersion curves are given in Eq. (3).

If the structure is doped, at suKciently low tempera-
ture most of the electrons are located in the first subband
e1. Let us consider an electromagnetic field of frequency
~ which is incident with a polarization vector normal to
the quantum wells. The dipolar interaction is given by
qEoz cosset, where q is the electronic charge. Time-
dependent perturbation theory shows that the electrons
are then in the stea.'dy state: '

ly(t)&=ly, &+ &
n(&1)

e h Cgt

(,„—)+ . Ik"„—kI, I'+il.
2m*

(4)

where coi„=Ei„/R=(E„Ei )/ih' is Bohr's fr—equency,
and k~~ and k~I are the parallel wave vectors in subbands n
and 1, respectively. %'e have made the near-resonant ap-
proximation [neglecting the (co+co,„)terms] and neglect-
ed transient behavior (exp+icoi„t terms) by introducing
the lifetimes I „1. Symmetry considerations on Bloch
states show that

Pg(t) =
~ g ~ ~

sin(cot) . (6)
„(co,„—co) +I,„

By identification, this leads to the expression of the ab-
sorption coefIicient per well a:

q vrp,

2m *n 6'oc ~ ( ~ 1 )

where 6 is the Kronecker function. The mean value of
the polarization per unit surface observable P=qz per
QW is given by P(t) =p, (4(t)lqzl%'(t) &, where p, is the
surface density of carriers in the QW. The quadrature
phase term P„(t) is then

where eo is the vacuum permittivity, c is the speed of
light, n is the dielectric constant of the material, and f i„
is the usual oscillator strength given by
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The integrated absorption on the nth peak, At(n), which
is the percentage of light power absorbed in the QW by
the nth resonance, is

2m
f2 E&2P12= 1 (12)

where tu, ;~
=

I ( gj Izl g, ) I is the off-diagonal matrix element.
Since p)2 has the same order of magnitude as the QW
width L, Eq. (12) is merely the approximate energy solu-
tion of the Schrodinger equation of an infinitely deep
QW. Equation (12) thus stipulates that, for a given pho
ton energy E 2, the dipole matrix element mill be
(mo/m')' higher in quantum wells than in molecules
Quantum wells behave, as far as intersubband transitions
are concerned, as giant "pseudomolecules. "

One may look for a first-principles origin of these large
dipole elements in the crystal structure of the host ma-
terial. The difference between the total absorption AT
for an m *=m o material and A T is

AT —AT=C
mo

m
(13)

where C is a constant given by Eq. (11). Using the k.p
formalism, Eq. (13) yields

2mpT=, & (,, i,=o—,, ),=0)
j(&c)
& I & uf, g=olzlu~, g=ol (14)

where j denotes the band index, E k G indicates the ex-
trerna of the different bands at k=O in the band struc-
ture, and c is the index corresponding to the conduction
band. This latter formulation means that the enhance-

ps
AI(n) = f a(co)de=, f,„.

nth peak 2m n E'oc

At this stage, it is important to note that, since the com-
mutation rules [z,p, ]=i A and [Ho, z]= i—kp, /m * apply
to our system, the oscillator strengths given by Eq. (8)
respect the Thomas-Reich-Kuhn sum rule

(10)
n (%1)

so that
2
&p mo

AT = g AI(n) =
(~1)

' 2moneoc m* '

where AT* is the total absorption from E, on the whole
spectrum and mo is the free-electron mass. The total ab-
sorption is thus a factor mo/m* higher in QW's (i.e.,
14.9 in GaAs) than in a bulk material (or a system with
m*=mo such as a molecule). This remark is the key
point that leads to giant optical nonlinearities. We derive
a very crude but illustrating argument of this

phenomenon below.
Indeed, we may simplify Eq. (10) by noting that, in in-

tersubband transitions, most of the oscillator strength is
located in the 1~2 transition (f i2 =0.96 for an infinitely
deep potential well), i.e., f,2 = 1. This reads

ment of the total absorption originates from the contribu
tion of the optical transitions between the conduction band
and the other bands of the crystal structure .This is of
course at the expense of other oscillator strength involved
in other optical transitions since the sum of the oscillator
strengths over the entire band structure must eventually
be equal to 1.

III. NONLINEAR OPTICAL SUSCEPTIBILITIES
FROM THE DENSITY-MATRIX FORMALISM

[Ho qzE(t), p—],"—I,"(p—p' ');J .
iA

(16)

For simplicity, we will assume in the following only two
different values of the relaxation rates: I,= 1!T, for
i =j is the diagonal (or inelastic) relaxation rate and
I z= 1/T2 is the off-diagonal (or elastic) relaxation rate.
Equation (16) is solved using the usual iterative
method

p(t) =g p'"'(t)

with

(n+1)
lj

at
1

[ [H p( II + i ) ] i irtP p( tl + i )

l

[qz, p'"']; E(t) .i' (18)

The electronic polarization of the QW will also be a series
expansion as Eq. (17). We shall limit ourselves to the first
two orders, i.e.,

p(t) =(e~(')Ee'~'+e~(z)g 2e '"')+c.c.+e~o )E

(19)

where g"', yz ', and yo
' are the linear, second-harmonic

generation, and optical rectification coefficients, respec-
tively. The electronic polarization of the nth order is
given by

P "'(t)=—Tr(p "qz),1

S (20)

where S is the area of interaction.
We will treat two cases in the following: (i) The optical

In this section, we will present a compact formalism
for the derivation of second-order nonlinearities in
AMQW's. Special emphasis will be put on optical
rectification and the electro-optic effect, this aspect being
rarely addressed in the literature. Let us consider the
system described by the Hamiltonian HG of Sec. II. At
thermal equilibrium, the density matrix p' ' is a diagonal
one, in which the diagonal elements p';; ' are the surface
thermal population p, of level E,. given by the Fermi level
in the QW. The system is excited by an internal elec-
tromagnetic field

E(t) =Ee' '+Ee

The evolution of the density matrix is given by the time-
dependent Schrodinger equation
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rectification in a two-level system: two levels are indeed
enough to guarantee the double-resonance effect
(co —co=0); and (ii) the second-harmonic generation in a
system with three levels that are equally spaced in energy
in order to guarantee double-resonance effects
(CO+ CO

—
2CO ).

3

(2) q Pi P2
+O ~2 P)2 12

epA
T

coi2 1+ +(CO +I 2) —1r, ' I.,
X

[(CO,2
—CO)2+I 2][(CO,2+CO) +I 22]

(26)

A. Optical rectification in a two-level system

The application of Eq. (18) to n =0 yields

(1)(r)p(1)(CO)e t tot+p(1)(CO)e i tttt

with

qp; (n —n;)
iri[(co+co; )

—iI; ]

(21)

(22)

p(2)( r )
—

p (2)( CO)e
2 ~

(+ tp
(2)(

CO )e 2i cot+ ad
(2) (23)

where R ' ' is the time constant density matrix associated
with optical rectification (OR), solution of

[H ( '], il;t—R(J '

=[qz,p'"(co)+p"'( —co)];~& . (24)

The elements of R ' ' are thus

22 11

The application of Eq. (20) leads directly to the expres-
sion of the absorption coefficient, which is identical to
Eq. (9) apart from p, being replaced by (pi —p2), where

p,. =n, /S is the surface concentration of carriers in the
ith subband. The next iteration (n = 1) leads to

It is clear that optical rectification will occur in asym-
metric QW's where the centroids of the electrons in states
~gi) and ~g2) are difFerent (512%0). The OR coefficient
at a desired frequency co will be maximum if the QW is
designed so that the energy difference E2 —E1 corre-
sponds to a resonance condition, i.e., cu =co12

(I,« I,«co»):
3

( ) g T1 T2
Xo, max 2 (Pl P2)812~12

epA
(27)

The electro-optic coefficient r of an AQW may be ob-
tained from yo(

) by r =go( )/ez, where eii is the relative
permittivity of the AQW at the frequency co. In order to
compare the electro-optic coefficients obtained in
AMQW's and in other materials, we must normalize Eq.
(27) to a volume. The normalization procedure, which
tends to limit the total size of the AMQW's in order to
enhance the linear density of QW's, plays a similar role in
the optimization of hyperpolarizable molecules for opti-
cal nonlinearities. For the clarity of the physics, we shall
make the assumption in the following that the thickness
of the Al„Ga, „As potential barrier is thin enough so
that the filling factor is taken equal to 1. Equation (27)
may then be rewritten to give the volume electro-optic
coefficient

q p(2(n) —n2)2 2

=2
g2

E 2

r,
q T1T2 P12&&2

3 2

, (Pi —P2)
cg GpA

(27')

1 1X +
2 2

(COi2 CO) + I 2 (COi2+CO) +1 2

(25)
where I is the width of the quantum well. I.et us note
that, by taking the volume density of carriers in the ith
subband as p, /L, one neglects the spatial variations of
carrier density due to space-charge effects.

q'~12P12(n) n2) — 12

$2 „+r, B. Second-harmonic generation in a three-level system

X
(CO

—
CO)2)

—i I 2

(25')
(CO+CO)2)+i I 2

The density matrix associated with SHG is obtained by
inserting Eq. (23) in Eq. (18), which yields

where 5,2=($2~z~g2t) —(g, ~z(g, ) is the mean electron
displacement during the transition. R21' is given by the
commutation of indexes 1 and 2 in Eq. (25'). By using
Eqs. (19), (20), and (25), one finally finds the OR
coefficient per unit surface:

-(2) -(1)[P2"]J=A(2 + —r )[qz,P ],JE.
CO Ct)p. l

(28)

Using Eq. (22) for p" and Eq. (19) for the definition of
y2 ', we find easily

(2) 9' 1 Pi PI
g2 M rf (2~+~ ) 'P X P'tkPk)P')t

( +co ) iI
PI Pk

(CO+CO) ) 'I kt
(29)
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E2

Ei E)

FIG. 1. Energy-band diagram of asymmetric quantum wells with (a) a virtual and (b) a real intermediate state, leading to single-

and double-resonance conditions, respectively. Optical transitions are symbolized by arrows.

3
~zi q (Pi Pz) P &&z3P3&

+2' (co 0 —i I z—)(2' 2Q —i I —
)

(30)

Once again, it is clear that the product p, ~23p3& is identi-
cally zero for symmetric wave functions. The volume
SHG coefficient has a peak value for co =Q given by

3
(2i 'I Pi P2 Pl F2239' 31

X2co, max LFp

At this stage, it is interesting to compare the enhance-
ment of the SHG coefficient due to the double-resonance
effect to the one calculated by Tsang, Ahn, and Chuang
in a single-resonance QW biased by an electric field.
Direct application of Eq. (29) for 2' =co,~ leads to

3
~ pi —p2)

2' (32)
epA'

2
Pi2&&2

(co—co,z
—i I z)(2' —co,z

—iI z)

One may then take the ratio between the maximum SHG

coefficients:

This sum has a sharp maximum if the condition of double
resonance can be met (see Fig. 1), i.e., co =co,2=co23=0:

0 for 0(z (d
Vz ='

V ford(z(L . (34)

A somewhat similar model has been proposed by
Goossen and Lyon to study the dielectric function of an
asymmetric QW with L ~ ~ and by Yuh and Wang to
study Stark shifts in such structures. Our purpose, how-
ever, is different from theirs. For each photon energy h v,
we are going to tune the three parameters (d, V, L) to op-
timize the OR and the SHG coefficients, respectively;
that is, considering the results of the preceding section, to

overlap integral in p&2 but enhance the mean electron dis-
placement 5&2. This tradeoff should lead to a quantum
limitation of geometrical origin in the second-order sus-
ceptibilities. For this purpose, we thus need a QW poten-
tial model where one can tune as independently as possi-
ble the quantized energies E;, the total thickness, and the
asymmetry.

The simplest model we can think of is an infinitely deep
potential well of total thickness L, divided in two parts
(see Fig. 2),

(2)
+2', max

p(2))2', max

Ipi2iuz3p3i I

~p25,
~

2I
(33)

Apart from the geometrical factor ~p, 2p23p3i/pi25, 2~, the
main gain in the double-resonance structure is thus due
to the long lifetime T2 of the electrons in the intermedi-
ate level E2 compared to the lifetime co,2 in the virtual
level in the single-resonance structure.

Another important point is the breakdown of Miller's

empirical rule. Indeed, because of the double-resonance
effect in these quantized structures, it is straightforward
to show that the Miller coefficient is proportional to the
photon energy and thus cannot be a universal constant.

hv

hv/ P2 ~----------
f v/P

IV. QUANTUM LIMITATION
TO SECOND-ORDER SUSCEPTIBILITIES

L PL

From Eqs. (27) and (31), it is clear that, in order to
maximize the second-order susceptibilities e.g., the OR
coefficient, there is a tradeoff to be made between p, 2 and
5,z. An increase of the QW asymmetry will decrease the

(a) (a)

FIG. 2. Scaling rules for infinite-step asymmetric quantum
wells.
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meet the following conditions.

Condition 1,

E2 —E, =h v for the OR case;

Condition 2,

2 g T1T2 1r,„(hv)=goRn ps „~, m*g2~
(39)

and

the values of the maximum volume second-order non-
linear susceptibilities are thus given, respectively, by

E3 E2 =E2 E] =A v for the SHG case 2 3T2
(2) q T2 1

72', max(~ v) gsHG ps i2 eo m* hv
(40)

Before describing our optimization procedure, we are go-
ing to derive an important scaling rule, which will allow
us to obtain the variation of the maximum second-order
susceptibilities as a function of the photon energy.

A. Photon energy scaling rule
for maximum second-order susceptibilities

Let us assume that the optimization problem for the
OR coefficient has been solved for a photon energy h v,
that is, we have found the triplet (d, L, V) which maxim-
izes the p, 26,2 product calculated from the wave func-
tions g;(z), solution of the Schrodinger equation:

d
g, (z)+ [ V(z) —E]g, (z) =0

2m" dz
(35)

a 2 a 3 2
I 12 ~ 12 012 ~I2 ' (36)

Considering the scaling rules for p I2 5 I~, E z E,and-
the triplet (V,d, L ), one may thus formulate the fol-
lowing laws.

For each photon energy hv, the optimized potential
profile (d, L, V) for a given nonlinear susceptibility is given
by

with E2 —E, =hv. Let us introduce the variable u =az
in Eq. (35), where a is a length scaling factor. It is clear
that the wave function P(u)=(1/&a)g;(u/a) is solu-
tion of the Schrodinger equation with potential profile
V (u)=(1/a )V(u/a), which is shown in Fig. 2. The
eigenenergies satisfy E 2 E,= (E2—E, ) /a an—d the
corresponding product of dipolar matrix elements

p &2 5 &2 is maximized for d =nd and L =aL and thus

gQR and gsHG are dimensionless quantities corresponding
to the ratios Iui2 &Is/Ld' and /l12ii23p31/Ld, respe~ti~e-
ly, which may be obtained from the triplet (C„C2,C3 ).

These limitations to second-order susceptibilities in
quantum structures are very different in nature from the
preceding ones, the most famous being the classical "po-
larizable sphere" model of Gurnick and DeTemple,
which yields an (h v) dependence of r,„and y2'„'.

B. Maximization of the electro-optic coeiBcient in a step QW

2/2
V= ~~, as d~0,

8m *4 (41)

where 0 is solution of tan0=0, i.e., 0=4.49. Moreover,
the dimensionless coefficient gQR is given by

=1.733X10
2~ 0 cos0

(42)

2.5 x10 2

The optimization scheme is the following. For an arbi-
trary photon energy, e.g., 50 meV, one varies d and V, cal-
culates L so that Condition 1 is met, solves the
Schrodinger equation, and computes the p, 2 6&2 product.
Figure 3 shows the variation of IMIz 5I2/d Q as a function
of L for difFerent values of d ranging from 1 to 17 nm. It
is clear from this figure that the maximum value is ob-
tained for d ~0 and V—+ ~. It can be shown (see the
Appendix) that the optimum triplet is

L/d„=8/n. ,

d=C)d

L =C2d

V=C3h v,
where d is given by

Rm.

&2m*IIv
'

(37)

(3&)

1.5
CJ

0.5

d

L

50 meV ~ dv — 10.6 nm
il

cl=2nm

d is the width of a QW for which the confinement ener-

gy E& is equal to the desired photon energy hv, e.g. ,
d =6.9 nm for a 10.6-pm photon. We are thus left with
the problem of finding the triplet (C„Cz,C3), i.e., the
"best potential shape, " for each type of nonlinear suscep-
tibility optimization. We will show below that C&, C2 are
in the 0.1—1 range so that d is indeed the length scale
which is relevant to our problem.

Given Eqs. (27) and (31) and including the scaling laws,

II I I I II I I

FIG. 3. Variation of the product of normalized dipolar ma-
trix elements p&2 5&z/Ld „as a function of the total AQW thick-
ness L/d„ for diFerent values of the deep QW thickness d. The
energy difference E2 —E& is kept equal to 50 meV. These curves
show that the maximum value of the electro-optical coefBcient r
is obtained for d —+0, i.e., for a diverging asymmetry.
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V. EXPERIMENTAL RKALIZATIONS

A. Optical rectification in AMQW's

In order to test our model, samples have been grown
by molecular-beam epitaxy. The samples used for optical
rectification consist of 12 periods of (3 nm GaAs) —(6.5 nm
Alo 2Gao sAs) wells separated by 50-nm-thick
Alo 4Gao 6As barriers epitaxially grown on a 3 X 10'
cm Si-doped GaAs substrate. The ratios d/d, I./d,
and V/h v, are 0.43, 1.4, and 1.37, respectively, for a pho-
ton energy of 118 meV. These values are very similar to
the optimized ones, as indicated in Table I. Figure 6 in-
dicates the band diagram and the square of the envelope
wave functions of the resulting AQW structure. From
this calculation, we find p&2= 1.76 nm and 5&2=3.96 nm.
The Al Ga& „As barrier thickness has been chosen rath-
er large and the Al composition sufficiently high so that
the structure is completely insulating at liquid-nitrogen
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FICx. 6. Energy-band diagram and square of the wave func-
tions of the step AQW used in the optical rectification study.

limit of Gurnick and deTemple. In their paper, these
authors estimate that the classical model leads to limit
values which are higher than the ones obtained using the
quantum Morse potential model. This is not so in our
case. The huge enhancement in the theoretical values of
the maximum susceptibilities in our model comes from (i)
a larger asymmetry and (ii) the possibility of independent-
ly tuning the asymmetry and the resonance conditions in
step QW's compared to a Morse potential. I.et us note
finally that an infinite potential well, such as used in this
theoretical part, is of course not physically feasible. For
instance, the maximum barrier height one may obtain in
the GaAs/Al„Ga, „As system is 350 meV for x =40%.
Above this Al concentration, the I and X valleys cross
and the effective barrier decreases. No simple theoretical
results may then be inferred. Nevertheless, the exact nu-
merical simulations show that the infinite potential well is
a good approximation of the physical case and that scal-
ing laws are still particularly well satisfied [see Table I
and Figs. 5(a) and 5(b)]. It should be noted that the
values obtained in finite QW's are higher than in infinite
ones. This is due to the contribution of the evanescent
part of the electron wave functions.

temperature. The GaAs well is uniformly doped at 0.5
nm from the interfaces, in order to yield a carrier concen-
tration of 10" cm, while the rest of the wells and bar-
riers are nonintentionally doped. The whole structure is
clad between two 300-nm thick Si-doped (10' cm )
GaAs contacting layers. Mesa n +-i -n + structures
(600X500 pm ) are fabricated, using a standard photol-
ithography technique and AuGeNi alloy contacts are
taken on the rear and top surfaces. Annular contacts are
used in order to allow front illumination.

Because of the high density of carriers in the Ohmic
contacts and in the GaAs wafer, Hall measurements and
absorption spectra cannot be performed in such a struc-
ture. Consequently, a similar sample has been grown on
a semi-insulating GaAs wafer, with 50 periods of the
same characteristics as the preceding structure but
without the GaAs contacting layers. Hall measurements
indicate a carrier concentration of 1. 1 X 10" cm with a
mobility of 4200 cm /V s at 4 K. Absorption spectrosco-
py is realized in a Fourier-transform infrared spectrome-
ter at 4 K. The absorption exhibits a Lorentzian line
shape with a peak at 10.0 pm with a value of 2.0X 10
per well at Brewster. angle. Using Eq. (7), we find a de-
phasing time T2 of 0.19 ps.

The principle of measurements of the optical
rectification coeKcient is the following. For an elec-
tromagnetic field propagating in the direction parallel to
the QW's, the dipoles which build up in the AMQW's in-
duce, if the material is insulating, a polarization
I' =e~o 'E . A steady-state electric field I'/roe„„ap-
pears in each QW (Ref. 27) yielding a voltage V at the
diode terminals given by

Xo"rioPw

~stat

where P~ is the incident beam power, go is the vacuum
impedance (377 0), N is the number of AQW's, and e„„
is the effective static dielectric constant that we take
equal to 13. This bias is measured using a lock-in tech-
nique, while the sample is illuminated by a continuous
CO2 laser chopped by a mechanical chopper (500—3000
Hz).

The sample is mounted in a liquid-N2 cryostat
equipped with ZnSe windows. In order to study the
inhuence of the angle of incidence, 0, of the optical beam
relative to the sample surface, the cryostat is mounted on
a goniometer. Two configurations may be used: S (TE),
where the polarization vector is perpendicular to the
plane of incidence, i.e., parallel to the surface of the sam-
ple, and I' (TM), where the polarization vector is in the
plane of incidence. Moreover, the polarization and the
intensity of the optical beam may be varied using a grat-
ing polarizer and a half-wave plate. Figure 7 shows the
induced voltage (laser power 60 W/cm ) as a function of
the angle of incidence for the P polarization
configuration. The bars indicate the experimental uncer-
tainties. The signal presents a well-defined maximum
near the Brewster angle. This is due to the combined
eFect of (i) the angular dependence of the coupling of the
electromagnetic field with the quantized electron gas and
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ANGLE OF INCIDENCE

FIG. 7. Optical rectification signal appearing in the 12-
period MQW's described in Fig. 6 as a function of the angle of
incidence. The sample is illuminated by a CO2 10a6-pm laser
with a power of 60 W/cm in the P (TM) polarization.

(ii) the variation of the power transmitted into the sam-
ple, which drops off rapidly from Brewster angle to graz-
ing incidence. Taking both effects into account, the opti-
cal rectification voltage V(8) which appears at the diode
terminals is

cos 8 sin 8

e~ cos8+Qe~ —sin 8
(44)

%'e have represented in Fig. 7 the best 6t between our ex-
perimental data and a combination of a thermal effect
(which yields the nonzero voltage at 8=0') and the opti-
cal rectification using Eqs. (43) and (44). The agreement
is quite good and we deduce an OR coefficient of
5.25X10 mjV in the wells, indicated in Fig. 5(a) for
comparison purposes. Using Eq. (27) with the calculated
value of p, 2 and 5&2, we deduce a diagonal relaxation time
T, of 0.6 ps, which is smaller than what is usually quoted
in the literature. The corresponding effective electro-
optic coefficient r is thus 7.2 nm/V (correcting for the
filling factor of only 15%%uo), which is more than three or-
ders of magnitude higher than in bulk GaAs.

An examination of Eq. (27) shows different ways to
enhance the OR coefficient: the geometrical factor
p» 5I2, which has already been addressed in Sec. IV, the
doping concentration p„which is limited by the solubili-
ty limit of Si in GaAs (=2 X 10' cm ), and the time
constant product T, T2. T2 is certainly governed by in-
trinsic mechanisms such as electron-electron interaction
or optical-phonon emission for an excitation energy
higher than 36 meV, without clear possibilities to act
upon it. On the other hand, T, is a population relaxation
time and can be enhanced by storing the excited electrons
on a metastable level ~g3), which interacts slowly with
the ground state ~g, ). Such a device is schematically
represented in Fig. 8. It consists of two GaAs quantum
wells (QWl and QW2), separated by an intermediate

Al~Ga, „As barrier, clad between two A1~Ga, ~As bar-
riers, with y &x. Under illumination, the electrons are
excited from level ~g, ) to ~(2), which is delocalized be-
tween both wells. Part of the electrons will recombine on
level ~g3), where they will be stored until they are
transferred back into QW1 by thermal emission or tun-
neling (depending on temperature) with a characteristic
time ~. The asyrnrnetry of the structure is due to the
difference of widths between QW1 and QW2. The struc-
ture must moreover fu1611 the following conditions: the
energy difference E2 —E

&
must be close to the photon en-

ergy hv, the energy difference E3 —E, must be large
compared to kT (6.S6 meV at 77 K), and the intermediate
barrier must be thick enough to induce a large transfer
time between QWl and QW2.

A complete calculation of the OR coefficient in this
three-level system is feasible using the results of Sec. III
but extremely tedious. The philosophy of the calculation
is that the double resonance

~ g, ) —+
~ gz ) —+

~ g, ) in the
two-level structure will be replaced by the resonance
~gi) —+~gz) ~~(&) in the three-level one. Consequently,
the product p» 5» will be replaced by p, 2p»6, 3 and the
product T, Tz by the product ~T2. The dipole I" of this
structure may thus be compared to the preceding one
P»a

I" p&3&i3

I' 2p)25» T)
(4S)

Most of the gain in this structure will come from the
enhancement of the ratio ~/T„ the geometrical factor
p; 5;. being bounded by quantum limits as stated in Sec.
IV. In the case of the structure in Fig. 8, using a
diffusion model based on a Frohlich interaction, the tun-
neling time is estimated at 10 ps, i.e., a gain of 20 com-
pared to the structure of Fig. 6.

The structure corresponding to Fig. 8 has been grown
by MBE. It consists of 50 periods of QW's (QW1: 7 nm
of GaAs; intermediate barrier: 24 nm of Alp ]8Gap 82As;
QW2: 5 nm of GaAs) separated by 34-nm-thick
Alp 36Gap «As barriers, epitaxially grown on a 3 X 10'
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90

80

T=77K
6.3 Wicm2 S

cm Si-doped GaAs substrate. QW1 is 4.3X10"cm
Si doped while the rest of the wells and barriers are
nonintentionally doped. The structure is clad between
two contacting layers and processed like the preceding
one. Figure 9 shows the induced voltage as a function of
angle of incidence 0 for polarizations S and P at a laser
power of 6.3 W/cm for a sample temperature of 77 K.
The sharp peak at the Brewster angle is observed in the P
polarization but absent in the S one where no coupling
can exist between the electromagnetic waves and the
quantized electron gas. Note that the signal values of the
rectification signal at zero angle are both equal in both
configurations, confirming the thermal nature of the sig-
nal at L9 =0 . The value of the OR coeScient is
1.62X10 m/V in each well, which is 310 times higher
than in the single-QW structure. We attribute this
enhancement factor to a gain of 4 on the carrier concen-
tration, a factor of 2.5 on the p;.6;. product, according to
dipole matrix element calculations, and a factor of 30 for
~ compared to T„ i.e., 18 ps instead of 0.6 ps. Finally,
the optically resonant character of the OR signa1 is
confirmed by studying the spectra1 response of this
AMQW's, using a tunable grating CO@ laser. The result-
ing curve, shown in Fig. 10, has been obtained at 77 K,
for a laser power of 30 mW, at a Brewster angle in the P
polarization configuration. The noise is largely due to
the geometrical Auctuations of the beam when varying
the wavelength. The spectral response is Lorentzian,
peaked around 11 pm with a somewhat large half-
maximum linewidth [fu11 width at half maximum
(FWHM)] of 20 meV. We attribute this large width to
the contribution of additional quantized levels in this
rather large quantum well.

T =77K
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FIG. 10. Wavelength dependence of the optical rectification
signal in the double AQW of Fig. 8. The sample is illuminated
by a tunable grating CO2 laser.

B. Second-harmonic generation in AMQW's

Samples used in our experiments have been chosen as
close as possible to the idea1 structures described in Sec.
IV. The structures grown by MBE consist of 100 periods
of (6 nm GaAs) —(4.5 nm Alo, Gao 9As) wells separated by
30 nm A10 4Ga0 6As barriers epitaxially grown on a semi-
insulating GaAs wafer. The calculated resulting band di-
agram of this AQW is shown in Fig. 11. The dipole ma-
trix elements given by the numerical resolution of the
Schrodinger equation are p&2=2. 1 nm, p23 =3.0 nm, and
p]3 0.38 nm. The GaAs wells are doped in their centers
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period MQW's described in Fig. 8 as a function of the angle of
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with a power of 6.3 W/cm in both polarizations. The signal at
0 is the residual thermal signal.
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FIG. 11. Energy-band diagram and square of the wave func-
tions of the step AQW used in the second-harmonic-generation
study.
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providing a 2.2 X 10" cm donor concentration as
checked by Hall measurement, whereas the rest of the
sample is nonintentionally doped. The absorption spec-
trum at room temperature, shown in Fig. 13, exhibits a
peak at 11.3 pm with a value of 3.3X 10 per well at the
Brewster angle. Given the value of p&2 and p„using Eq.
(7) for the absorption, we find a dephasing time T2 of 0.14
ps, which is in good agreement with the results obtained
in the OR samples. Let us note that the transition

E, —+E& is not visible in our infrared spectrum. This is

due to the small value of p» compared to p, 2. This result

differs from the result of Mii et al. who used a special
QW design in which E,~Ez and E,~E3 transitions
have similar oscillator strengths.

The measurements are made using the same laser
sources as in the preceding OR experiments. Care is tak-
en to eliminate the undesirable luminescence lines of the
laser source (mostly 5.3 p,m) by means of an InSb or inter-
ferometric filter. The SHG signal is detected in a cooled
InSb or a room-temperature pyroelectric detector. The
10-pm laser beam is prevented from illuminating the
detectors by means of a sapphire window. Experiments
are done at room temperature. Figure 12 shows the SHG
signa1 as a function of the angle of incidence for a I' po-
larization in an AMQW structure and in the bulk GaAs
substrate. The signal is almost absent in the latter case,
though the total thickness of the GaAs wafer is 300 pm
while it is only 10 pm in the AMQW's. Note also that the

SHG is so intense that no phase matching is necessary. At
the Brewster angle where all the power is transmitted to

T = 300K

AMQW

the crystal, the SHG yield P2„/P is then given by

P2 co (iy2' 'iNL)=2goeo 3
I'

67 Eg
(46)

Figure 12 indicates a yield of 1.0 X 10 for 1 W of pump
power, that is, an experimental value of the SHG
coeflicient of 7.2X10 m/V. This value is 1900 times
greater than the one found in bulk GaAs, which is al-
ready a good nonlinear material in the infrared, and
about 26 times greater than the value obtained by Fejer
et al. in biased quantum wells. Once again, this
enhancement of the SHG coefficient in our structure is
due to the doubly resonant nature of the optical transi-
tions in our AQW's compared with biased symmetric
ones.

Figure 13 shows the second-harmonic power as a func-
tion of the pump laser wavelength. This spectral
response is fitted by the product of the Lorentzian line
shapes given by Eq. (30) using the value of I z obtained
from absorption experiments. The agreement between
experiment and theory is excellent. The apparent de-
crease in the FWHM linewidth in the SHG spectrum
compared to that of the absorption one is in excellent
agreement with theoretical predictions. Indeed, if we cal-
culate the ratio between the FWHM of the Lorentzian
line shape 1/[(rp —co,2) +I ] and the product of the
Lorentzian line shapes found in Eq. (30), i.e,
1/[(2' —2', 2) +1 ][(2ro—2cotz) +1 ], we find a value
of 2.38 while an experimental ratio of 2.5 is obtained.
This decrease in the linewidth is a consequence of the
coherent origin of the second-harmonic-generation mech-
anism. Let us note finally the small shift in the peak posi-
tion between the absorption and the SHG spectral curves.
We attribute this fit to a small difference between energies
E3 —Ez and E2 E

2 p — ~ AMQW
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FIG. 13. Variation of the second-harmonic-generation yield
as a function of the grating CO2 laser excitation wavelength and
transmission spectrum obtained by Fourier-transform infrared
spectroscopy of AQW's. Experimental points are taken from
Ref. 14.
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VI. CONCLUSION

In this paper, we have presented a concise formulation
of second-order optical nonlinearities in asymmetric
quantum wells. The origin of the large oscillator
strengths in GaAs QW's is analyzed in terms of the con-
tribution of the optical transitions over the whole band
structure of GaAs. The normalized dipolar matrix ele-
ments p,~23p»/L or pi2 5,2/L (L is the total QW thick-
ness) which lead to the maximum values of the second-
order susceptibilities are expressed in terms of the prod-
uct gd: g is a universal geometrical factor while d, is the
width of the QW in which the energy of the first quan-
tized level Ei is equal to the photon energy hv. This
simplified approach allows us to introduce additional
quantum limitations to second-order optical nonlineari-
ties in asymmetric quantum wells with the different relax-
ation times left as parameters. We thus show that the
huge nonlinearities observed in these structures are due
to (i) the effect of the small effective mass (which was al-
ready addressed in the literature), but mainly from (ii) the
double-resonance effect that can be designed in these
AQW's. Values of optical rectification coefficients as
high as 1.6X10 m/V at 10.6 pm (i.e., six orders of
magnitude higher than in bulk GaAs) may be obtained in
optimized structures while a second-harmonic-generation
coefficient of 7.2X10 m/V at 10.6 pm is found in
AQW's that is more than three orders of magnitude
higher than in bulk GaAs. All these experimental results
are in excellent agreement with our simplified theoretical
approach and show that these AQW's really behave as gi-
ant "pseudomolecules" optimized for optical nonlineari-
ties in the infrared.

We would like to thank the team of the Institut
d'Electronique Fondamentale in Orsay (Dr. J. M. Lour-
tioz and Dr. F. Julien) for their collaboration in the ex-
perimental work of second-harmonic generation in asym-
metric quantum wells.

APPENDIX: SOLUTION
OF THE SCHRODINGER EQUATION

FOR AN INFINITE QW
WITH A DIVERGING ASYMMETRY

As shown in Fig. 3, the maximum value of p&25&2 is ob-
tained for d~0 and V~ ao. This corresponds to a QW
with an increasing and diverging asymmetry. A careful
examination of our numerical results shows that this
maximum is obtained when the first level E, is very close
to V. This can be understood in the following way. If E,
is below V, the first level is localized in the GaAs part of
the QW while the second level is delocalized in the QW:
p12 is small and 512 is large. On the other hand, if E
above V, both levels are delocalized in the QW: then p, z
is large and 6&z is small. The condition E1=V corre-
sponds to a tradeoff between both situations. We derive
below the value of the dipolar matrix elements in an
asymmetrical step quantum well with E, = V and d ~0.

The first wave function in the well is thus

go,«(z) = A o,«sinkz, for 0 & z & d;
(A 1)

PA1 o A(z) AA1 o ~ (z L), for d&z &L

where the wave vector k=+2m*V /fi is given by the
continuity condition

ACKNOWLEDGMENTS tan(kd)
k

(A2)
This work would have not been possible without the

help of many fruitful discussion with various colleagues.
Among them, we are particularly indebted to Dr. B.
Vinter and Professor C. Weisbuch from Thomson-CSF,
Dr. J. Zyss, Dr. I. Abram, and Dr. J. L. Oudar from the
Centre National d'Etudes des Telecommunications (Bag-
neux), Professor C. Flytzanis, Dr. G. Lampel, and Profes-
sor C. Hermann from the Ecole Polytechnique (Paris),
and Professor G. Fishman from the CNRS (Grenoble).

Since k —+ ~, then kd —&ir/2 in order to satisfy Eq. (A2)
so that

(A3)

The wave function of the second level E2 = V+h v is

o,w, (z)=Ba,«sin(9o, w, z), for 0&z &d;

«(z)=8&~ o~ «sinjqz& o z (L —z)] for d &z &L .
(A4)

with the wave vectors given by

+2m *(V+Ii v)
qGaAs

The continuity condition reads

tan[VAi oa& «(L d)]
(A6)

&2m *Ii v
qA1„Gal „As

7T

d.

(A5) qGaAs q Al Ga) As

When d ~0, then qG, A, ~k and therefore
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tanqp„o, „,(L —d) —=q„, G, As(L —d) «om Eq.
(A2). Consequently, the limit width of the asymmetric
QW is given by

I.=—d
0

(A7)

where 0 is the smallest solution of the implicit equa-
tion tan0=0, i.e., 0=4.4934. This limit is clearly seen in

Fig. 3. One is left with computing the normalization
factors of the wave functions. One finds,

3respectively, Ao,A, =&3/L, AA, G, ~, = v3/L- ,

B&,&, =&2/L sin0, and B&& o, A, =&2/L. Using

and 6,2=L/4. The value of the optimal p, ~5,z/L prod-
uct, which maximizes the electro-optic coe%cient, calcu-
lated under the condition E& = Vis thus finally

Pie &i& 3 (1—cos8)
2m. cos 60

(A9)

the wave functions of Eqs. (Al) and (A4), the overlap in-
tegral p&2 and the electron mean displacements can be
calculated and are, respectively,

6 (1—cos8)
Pi2 g3 cosO
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