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Abstract. Electron Raman scattering (ERS) is investigated in a free-standing semiconductor quantum wire
of cylindrical geometry for two classes of materials CdS and GaAs. The differential cross section (DCS)
involved in this process is calculated as a function of a scattering frequency and the radius of the cylinder.
Electron states are considered to be confined within a free-standing quantum wire (FSW). Single parabolic
conduction and valence bands are assumed. The selection rules are studied. Singularities in the spectra are
found and interpreted for various radii of the cylinder.

PACS. 78.67.Lt Quantum wires – 78.67.-n Optical properties of low-dimensional, mesoscopic, and
nanoscale materials and structures – 78.66.Fd III-V semiconductors

1 Introduction

As is known to us all, nanostructures such as supperlat-
tices, quantum wells, quantum wires and quantum dots
have been widely studied for their peculiar physical prop-
erties. Nanometer-scale confinements of the band electrons
(band holes) in semiconductor materials provide varieties
of quantum phenomena , such as low-dimensional electron
states (hole states), modified dynamics of carriers in the
systems and increased exciton binding energy [1–3]. Those
quantum phenomena might be applied in the field of solid
state lasers and optoelectronic devices [4].

Raman spectra is being focused on for its possible ap-
plications. Basing on resonant Raman scattering, Raman
injection laser has been produced [5]. Moreover, it is well-
known that Raman scattering experiments can be used to
investigate different physical properties of semiconductor
nanostructures [6–8]. The electronic structure of nanos-
tructures can be investigated through Raman scattering
processes considering different polarizations of incident
and emitted radiation [6–9]. In connection with the ex-
periments of the ERS, the calculation of the DCS remains
a piece of fundamental work.

Multiphonon or one phonon Raman scattering has
been discussed in many nanostructures [10–14]. Mean-
while, Raman scattering without phonon has also been
reported, and rich spectra which are the main character-
istic of the ERS have been observed [15–17]. However,
the difference of the contribution of electron and hole to
Raman scattering is seldom discussed. In this paper, we
have calculated the DCS of Raman scattering due to elec-
tron and hole without phonon in a FSW under various
radii of cylinder for the two classes of materials CdS and
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GaAs. The electron is completely confined within the sys-
tem. Parabolic bands are also considered.

It has been found that there are anisotropic optical
properties in quantum wires [18], dielectric and quantum
confinement effects result in prominent exciton features
such as large binding energies and oscillator strengths [19].
Similarly, in our paper, we find that dielectric and quan-
tum confinement effects can also intensify the DCS of Ra-
man scattering.

2 Model and theory

Let us briefly describe the model and the fundamental
theory applied in our calculations. The FSW geometry
is cylindrical with circular cross section of radius r0 and
length L. We consider a single conduction (valence) band
split into a subband system due to electron confinement
within the structure. The solution of Schrödinger equa-
tion, for an infinitely high potential barrier, is given by
references [20]
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where j = 1(2) stands for the electron (hole).
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(χnjmj ) is its partial
derivative. The states are described by the quantum num-
bers: nj = 0, 1, . . .; mj = 1, 2, . . . . kzj is the wave number
of the free motion of electron along the wire axis. uj is
the Bloch function taken at �k0 = 0, where (by assump-
tion) the band extrema are located. On the other hand,
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the energy levels are determined by
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where µ1 (µ2) is the effective masses of electron (hole) in
the wire.

3 Differential cross section

The differential cross section for electron Raman scatter-
ing of a volume V per unit solid angle dΩ for incoming
light of frequency ωl and scattering light of frequency ωs

is given by references [17]

d2σ

dωsdΩ
=
V 2ω2

sη(ωs)
8π3c4η(ωl)

W (ωs, �es) (3)

where η(ω), as a function of the radiation frequency, is
the refractive index, �es is the polarization vector for the
emitted secondary radiation, c is the velocity of light in
vacuum and W (ωs, �es) is the transition rate calculated
according to
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where
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(5)
In equation (5), |i〉 and |f〉 denote the initial and final
states of the system,respectively, their corresponding en-
ergies are Ei and Ef . |a〉 and |b〉 are the intermediate
states with energies Ea and Eb while Γa and Γb are the
corresponding lifetime widths. The Hamiltonian Ĥjl is

Ĥjl =
|e|
µ0

√
2π�

V ωl
�el · �̂p �̂p = −i��∇ j = 1, 2 (6)

where µ0 is the free-electron mass. This Hamiltonian de-
scribes the interaction between the electron and the in-
cident radiation field in the dipole approximation. The
interaction between the electron and the secondary radi-
ation field is described by

Ĥjs =
|e|
µj

√
2π�

V ωs
�es · �̂p j = 1, 2. (7)

This Hamiltonian describes the photon emitted by the
electron (hole) when transitions between conduction (va-
lence) subbands of the system occur.

There are two possible processes of ERS [17]:
(1) The intermediate states are in the conduction band.

An electron-hole pair (EHP) between the state
|n2,m2〉 in the valence band and the state |n′

1,m
′
1〉

in the conduction band is created when absorbing an
incident light quantum. Then an electronic transition
from the state |n′

1,m
′
1〉 to the state |n1,m1〉 in the

conduction band occurs to emit a scattered photon.

(2) The intermediate states are in the valence band. The
ERS process involves two electrons: one electron moves
from the state |n′

2,m
′
2〉 in the valence band to the state

|n1,m1〉 when absorbing an incident photon, the other
electron transfers from the state |n2,m2〉 to the vacant
state in the |n′

2,m
′
2〉 subband. In fact, the final effect

is that an electron shifts from the state |n2,m2〉 to the
state |n1,m1〉.

In the initial state |i〉, it has a completely occupied valence
band, an unoccupied conduction band, and an incident
photon of energy �ωl. Thus,

Ei = �ωl. (8)

The final state |f〉 contains an EHP excited in a real state
and a secondary radiation emitted photon of energy �ωs.
Hence,

Ef = En1m1 + Ez1 + En2m2 + Ez2 + �ωs + Eg. (9)

For the intermediate states |a〉 and |b〉 , the energies Ea

and Eb can be easily obtained from the above discussion,
and using energy and momentum conservation laws, we
can evaluate the denominators in equation (5)
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2
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Now, we can calculate the matrix elements. Considering
the allowed electron transitions between conduction and
valence bands, equations (1) and (6), the matrix element
〈a|Ĥjl|i〉, in the envelope function approximation, can be
written as
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For the electron(hole)-secondary-radiation interaction
matrix element, it can be seen that
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Thus, for the intermediate states in the conduction band,
we get the DCS for ERS, that is
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We can get similar expressions for the interband ERS pro-
cess with the intermediate states in the valence band (with
replacements n2→n1, n

′
1→n

′
2, n1→n2 ;m2→m1,m

′
1→m

′
2,

m1→m2 ; µ1→µ2, µ2→µ1).

4 Results and discussions

In this section, the differential cross section (DCS) given
by equation (14) is calculated numerically for a FSW of
GaAs or CdS. The physical parameters used in our ex-
pressions are [13,14,20]: Γa = Γb = 1 meV; µ1 = 0.067µ0,
µ2 = 0.45µ0, ε = 13.18 and Eg = 1.5177 eV for GaAs ;
while µ1 = 0.18µ0, µ2 = 0.51µ0, ε = 8.9 and Eg = 2.6 eV
for CdS. In our calculations, we select quantum numbers:
n1 = n′

1 = n
′
2 = n2 = 0.

In the case of the scattering configuration Z̄(�el, �esz)X ,
the following selection rule is satisfied: n1 = n2 . In this
case, it can be seen from equations (10) or (11), the emis-
sion spectra of the ERS show maxima for the value of ωs

given by

ωs =
En

′
1m

′
1
− En1m1

�
(15)

or

ωs =
En

′
2m

′
2
− En2m2

�
. (16)

So we can obtain the information about electronic (hole)
states involved in the scattering process. Electron transi-
tions are indicated by νe(m2,m

′
1,m1) and νh(m1,m

′
2,m2)

corresponding to conduction electron and valence hole in-
tersubband transitions.

In Figure 1a, we show the emission spectra of the FSW
due to hole in the scattering configuration Z̄(�el, �esz)X .
We select the radius r0 = 4 nm. It can be observed: the
positions of singularities for the two classes of materials
CdS and GaAs are different; in the same condition, the
value of singularity for a GaAs system is smaller than
that for a CdS system.

Similar to Figure 1a, in Figure 1b, we show the emis-
sion spectra of the FSW due to electron with r0 = 4 nm.

(a)

(b)

Fig. 1. Raman spectra of the FSW due to hole/electron in the
scattering configuration Z̄(�el, �esz)X for a CdS/GaAs system
with r0 = 4 nm. (a) hole (b) electron.

It can be obtained: in the same condition, the value of
singularity for a GaAs system is larger than that for a
CdS system. This is caused by dielectric confinement. A
larger dielectric constant for a GaAs system leads to its a
larger value of singularity, which is similar to the Figure 2
in references [21]. Compare Figure 1a to Figure 1b we can
easily find: the value of singularity due to hole(electron)
is different for different materials, in the same condition,
the value of singularity due to hole(electron) for a GaAs
system is smaller(larger) than that for a CdS system; in
the same system, the value of singularity due to electron
is larger than that due to hole and this is accord with the
Figure 2 in references [17].

In Figures 2a and 2b, for a GaAs system, we show the
emission spectra of the FSW due to hole and electron, re-
spectively. There appears rich spectra like that mentioned
in references [17]. We can see that the value of singularity
due to both hole and electron becomes larger when the
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(a)

(b)

Fig. 2. Raman spectra of the FSW due to hole/electron in the
scattering configuration Z̄(�el, �esz)X for a GaAs system with
various radii. (a) hole (b) electron.

radius of cylinder becomes smaller. This is caused by a
very anisotropic optical activity due to quantum confine-
ment [22,23]: the DCS parallel to the wire axis is dominant
due to the anisotropic optical activity, the smaller the ra-
dius becomes, the stronger the anisotropic optical activ-
ity becomes due to the more significant quantum confine-
ment, so the value of singularity related to both hole and
electron increases which likes Figure 6b in reference [19].
However, as discussed above, with the same radius, the
contribution to Raman scattering due to electron is far
larger than that due to hole.

5 Conclusions

We have investigated theoretically the DCS for the ERS
process associated with electron and hole in a free-
standing semiconductor quantum wire of cylindrical ge-
ometry for the two classes of materials CdS and GaAs.

The numerical results in the scattering configuration
Z̄(�el, �esz)X show that the DCS depends on the radius
r0 and it varies in different systems. In the same con-
dition, the value of singularity due to electron(hole) for a
GaAs system is larger(smaller) than that for a CdS system
for the sake of dielectric confinement. The contribution to
Raman scattering due to electron or hole increases as the
radius of the cylinder decreases which is caused by quan-
tum confinement of the FSW. However, with the same
radius, the contribution due to electron is far larger than
that due to hole.

This work is supported by Guang-dong Provincial Natural Sci-
ence Foundation of China(under Grant No. 05001873).
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